Skip to contents

[Experimental]

Function precipitation_rainfall_erosivity() calculates a multi-year average of monthly rainfall erosivity using the MedREM model proposed by Diodato and Bellochi (2010) for the Mediterranean area (see also Guerra et al. 2016).

Usage

precipitation_rainfall_erosivity(
  meteo_data,
  longitude,
  scale = c("month", "year"),
  average = TRUE
)

Arguments

meteo_data

A meteo tibble as with the dates and meteorological variables as returned by interpolate_data in the "interpolated_data" column.

longitude

Longitude in degrees.

scale

Character, either 'month' or 'year'. Default to 'month'

average

Boolean flag to calculate multi-year averages before applying MedREM's formula.

Value

A vector of values for each month (in MJ·mm·ha-1·h-1·month-1) or each year (in MJ·mm·ha-1·h-1·yr-1), depending on the scale

Details

MedREM model is: Rm = b0·P·sqrt(d)·(alpha + b1*longitude), where P is accumulated precipitation and d is maximum daily precipitation. Parameters used for the MedREM model are b0 = 0.117, b1 = -0.015, alpha = 2. Note that there is a mistake in Guerra et al. (2016) regarding parameters b1 and a.

References

Diodato, N., Bellocchi, G., 2010. MedREM, a rainfall erosivity model for the Mediterranean region. J. Hydrol. 387, 119–127, doi:10.1016/j.jhydrol.2010.04.003.

Guerra CA, Maes J, Geijzendorffer I, Metzger MJ (2016) An assessment of soil erosion prevention by vegetation in Mediterranean Europe: Current trends of ecosystem service provision. Ecol Indic 60:213–222. doi: 10.1016/j.ecolind.2015.06.043.

Author

Miquel De Cáceres Ainsa, CREAF.

Víctor Granda García, CREAF.

Examples

# \donttest{
interpolated_example <-
  interpolate_data(points_to_interpolate_example, meteoland_interpolator_example)
#>  Starting interpolation...
#>  Temperature interpolation is needed also...
#> • Interpolating temperature...
#>  Precipitation interpolation is needed also...
#> • Interpolating precipitation...
#>  Relative humidity interpolation is needed also...
#> • Interpolating relative humidity...
#>  Radiation calculation is needed also...
#> • Calculating radiation...
#>  Wind interpolation is needed also...
#> • Interpolating wind...
#> • Calculating PET...
#>  Interpolation done...

precipitation_rainfall_erosivity(
  meteo_data = interpolated_example$interpolated_data[[1]],
  longitude = 2.32,
  scale = "month",
  average = TRUE
)
#>        4 
#> 48.02902 
# }