Skip to contents

Introduction

Species parameter values cannot be drawn from a single data source. Moreover, the availability of plant trait data continuously increases, as additional efforts are made in observational or experimental studies (Kattge et al. 2020). This means that multiple data sources need to be harmonized before species parameter tables are build, in terms of:

a) Nomenclature of measured variables.
b) Measurement units.
c) Taxonomy of the measured biological entities. 

The result of this harmonization needs to be stored in a harmonized format for subsequent use when creating species parameter tables. This vignette illustrates the harmonization procedures for an example data set using package trait4models and the usual tidyverse packages. Harmonization of allometric equations is explained in a companion vignette.

IMPORTANT: This vignette is not self-contained, in the sense that it cannot be reproduced without access to data sets that are not included. Nevertheless, it is intended to serve as example of trait database harmonization.

Required packages

Assuming we have traits4models installed, we load it and other common packages that we will employ in this vignette:

Example dataset

As example for the harmonization process, here we will use data from a Bartlett et al. (2016). Much larger data sets can (and should) be processed, but they take much more time. Bartlett et al. provide traits that describe the leaf/stem/root hydraulic vulnerability curves of several species as well as water potential corresponding to stomatal aperture. We start by loading the dataset:

DB_path <- "~/OneDrive/mcaceres_work/model_development/medfate_parameterization/traits_and_models/"
db <- readr::read_csv(paste0(DB_path, "data-raw/raw_trait_data/Bartlett_et_al_2016/pnas.1604088113.sd01.csv"))

The data looks as follows:

db
## # A tibble: 310 × 26
##    Group      Name          Biome `Evergreen/Decid` `Leaf P50 (MPa)` `TLP (MPa)`
##    <chr>      <chr>         <chr> <chr>                        <dbl>       <dbl>
##  1 Angiosperm Acacia gregg… Semi… E                            NA          -4.25
##  2 Angiosperm Acer campest… Temp… D                            -1.32       -1.9 
##  3 Angiosperm Acer grandid… Temp… D                            NA          -2.45
##  4 Angiosperm Acer monspes… Med.… D                            -1.89       -2.2 
##  5 Angiosperm Acer negundo  Temp… D                            NA          -1.59
##  6 Angiosperm Acer pseudop… Temp… D                            -1.19       -1.4 
##  7 Angiosperm Acer rubrum   Temp… D                            -1.7        -1.59
##  8 Angiosperm Acer sacchar… Temp… D                            NA          -2.78
##  9 Angiosperm Adansonia ru… Trop… D                            NA          -1.12
## 10 Angiosperm Adansonia za  Trop… D                            NA          -1.26
## # ℹ 300 more rows
## # ℹ 20 more variables: `Stem P50 (MPa)` <dbl>, `Stem P88 (MPa)` <dbl>,
## #   `Stem P12 (MPa)` <dbl>, `Root P50 (MPa)` <dbl>, `Gs P50 (MPa)` <dbl>,
## #   `Gs 95 (MPa)` <dbl>, `plant Psi_lethal (MPa)` <dbl>,
## #   `Psimin_predawn (MPa)` <dbl>, `Psimin_midday (MPa)` <dbl>,
## #   `Psimin_midday and/or predawn Method` <chr>,
## #   `Reference (for Leaf P50)` <chr>, `Reference (for TLP)` <chr>, …

Harmonizing notation and measurement units

The first steps to be done are to harmonize trait notation, i.e. how plant traits are referred to, and if necessary, change their units. Package traits4models includes a data table called HarmonizedTraitDefinition that presents plant trait definitions and their required notation and units:

Definition Notation Type Units EquivalentUnits AcceptedValues MinimumValue MaximumValue
Life form LifeForm String NA NA chamaephyte,cryptophyte,epiphyte,hemicryptophyte,phanerophyte,therophyte,hydrophyte NA NA
Growth form GrowthForm String NA NA tree,shrub,herb,shrub/herb,tree/herb,tree/shrub,tree/shrub/herb,fern,grass,other NA NA
Leaf shape LeafShape String NA NA broad,linear,needle,scale,spines,succulent NA NA
Leaf area LeafArea Numeric mm2 NA NA 0 NA
Leaf size (category) LeafSize String NA NA lepto,macro,meso,micro,nano,noto,pico NA NA
Leaf angle (inclination, orientation) LeafAngle Numeric degree NA NA 0 90
Dispersal syndrome DispersalMode String NA NA insect,auto,ballistic,vertebrate,water,wind,vehicles NA NA
Leaf phenology type PhenologyType String NA NA drought-semideciduous,oneflush-evergreen,winter-deciduous,winter-semideciduous NA NA
Shade tolerance type ShadeToleranceType String NA NA light-demanding,shade-tolerant NA NA
Duration of leaves (leaf lifespan) LeafDuration Numeric year NA NA NA NA
Maximum plant height Hmax Numeric cm NA NA 0 NA
Maximum (tree) diameter Dmax Numeric cm NA NA 0 NA
Actual plant height Hact Numeric cm NA NA 0 NA
Rooting depth Z95 Numeric mm NA NA 0 NA
Crown ratio (crown length divided over total height) CrownRatio Numeric NA NA NA NA NA
Leaf area per leaf dry mass (specific leaf area, SLA), 1/ Leaf mass per area (LMA) SLA Numeric m2 kg-1 mm2 mg-1 NA 0 NA
Leaf area to sapwood area ratio (Al2As), 1 / Huber Value (Hv) Al2As Numeric m2 m-2 mm2 mm-2 NA 0 NA
Proportion of sapwood corresponding to conducive elements (vessels or tracheids) as opposed to parenchymatic tissue. conduit2sapwood Numeric NA NA NA NA NA
Specific root length SRL Numeric cm g-1 NA NA 0 NA
Proportion of total fine fuels that are dead pDead Numeric NA NA NA 0 1
Stem carbon (C) content per stem dry mass WoodC Numeric g g-1 NA NA NA NA
Density of leaf tissue (dry weight over volume) LeafDensity Numeric g cm-3 mg mm-3 NA 0 NA
Wood tissue density (at 0% humidity!) WoodDensity Numeric g cm-3 mg mm-3 NA 0 NA
Density of fine root tissue (dry weight over volume). FineRootDensity Numeric g cm-3 mg mm-3 NA 0 NA
Leaf width LeafWidth Numeric cm NA NA 0 NA
Maximum stomatal conductance to water vapor Gswmax Numeric mol s-1 m-2 NA NA 0 NA
Minimum stomatal conductance to water vapor Gswmin Numeric mol s-1 m-2 NA NA 0 NA
Stem conductance to water vapor Gbark Numeric mol s-1 m-2 NA NA 0 NA
Osmotic potential at full turgor of leaves LeafPI0 Numeric MPa NA NA NA NA
Modulus of elasticity (capacity of the cell wall to resist changes in volume in response to changes in turgor) of leaves LeafEPS Numeric MPa NA NA NA NA
Leaf apoplastic fraction LeafAF Numeric [0-1] NA NA NA NA
Modulus of elasticity (capacity of the cell wall to resist changes in volume in response to changes in turgor) of sapwood StemEPS Numeric MPa NA NA NA NA
Leaf water potential at turgor loss point Ptlp Numeric MPa NA NA NA NA
Slope coefficient of the Medlyn stomatal conductance model g1_Medlyn Numeric NA NA NA NA NA
Parameters of the stomatal response to leaf water potential Gs_P20 Numeric MPa NA NA NA 0
Parameters of the stomatal response to leaf water potential Gs_P50 Numeric MPa NA NA NA 0
Parameters of the stomatal response to leaf water potential Gs_P80 Numeric MPa NA NA NA 0
Parameters of the stomatal response to leaf water potential Gs_P90 Numeric MPa NA NA NA 0
Parameters of the stomatal response to leaf water potential Gs_P95 Numeric MPa NA NA NA 0
Leaf photosynthesis carboxylation capacity (Vcmax) per leaf area (Farquhar model) Vmax Numeric umol m-2 s-1 NA NA 0 NA
Leaf photosynthesis electron transport capacity (Jmax) per leaf area (Farquhar model) Jmax Numeric umol m-2 s-1 NA NA 0 NA
Leaf nitrogen (N) content per leaf dry mass Nleaf Numeric mg g-1 NA NA 0 NA
Wood nitrogen (N) content per wood dry mass Nsapwood Numeric mg g-1 NA NA 0 NA
Fine root nitrogen (N) content per fine root dry mass Nfineroot Numeric mg g-1 NA NA 0 NA
Maximum stem-specific hydraulic conductivity Ks Numeric kg m-1 MPa-1 s-1 NA NA 0 NA
Maximum leaf-specific hydraulic conductivity (Ks*Hv) Kl Numeric 10-4 kg m-1 MPa-1 s-1 NA NA 0 NA
Maximum leaf hydraulic conductance kleaf Numeric mmol m-2 s-1 MPa-1 NA NA 0 NA
Maximum whole-plant hydraulic conductance kplant Numeric mmol m-2 s-1 MPa-1 NA NA 0 NA
Parameters of the stem vulnerability curve VCstem_P12 Numeric MPa NA NA NA 0
Parameters of the stem vulnerability curve VCstem_P50 Numeric MPa NA NA NA 0
Parameters of the stem vulnerability curve VCstem_P88 Numeric MPa NA NA NA 0
Parameters of the stem vulnerability curve VCstem_slope Numeric NA NA NA 0 NA
Parameters of the leaf vulnerability curve VCleaf_P12 Numeric MPa NA NA NA 0
Parameters of the leaf vulnerability curve VCleaf_P50 Numeric MPa NA NA NA 0
Parameters of the leaf vulnerability curve VCleaf_P88 Numeric MPa NA NA NA 0
Parameters of the leaf vulnerability curve VCleaf_slope Numeric NA NA NA 0 NA
Parameters of the root vulnerability curve VCroot_P12 Numeric MPa NA NA NA 0
Parameters of the root vulnerability curve VCroot_P50 Numeric MPa NA NA NA 0
Parameters of the root vulnerability curve VCroot_P88 Numeric MPa NA NA NA 0
Parameters of the root vulnerability curve VCroot_slope Numeric NA NA NA 0 NA
Leaf dry mass per leaf fresh mass (leaf dry matter content, LDMC) LDMC Numeric mg g-1 NA NA 0 NA
Leaf fuel moisture content (% of dry weight) LFMC Numeric % NA NA 0 NA
Ratio of foliar (photosynthetic) + small branches (<6.35 mm) dry biomass to foliar (photosynthetic) dry biomass r635 Numeric NA NA NA 1 NA
High fuel heat content HeatContent Numeric kJ kg-1 NA NA 0 NA
Surface-area-to-volume ratio SAV Numeric m2 m-3 NA NA 0 NA
Percent of lignin+cutin over dry weight in leaves LigninPercent Numeric % NA NA 0 100
Bark thickness BarkThickness Numeric mm NA NA 0 NA
Seedbank average longevity SeedLongevity Numeric year NA NA 0 NA
Maturation height Hmat Numeric cm NA NA 0 NA
Maturation diameter Dmat Numeric cm NA NA 0 NA
Seed dry mass SeedMass Numeric mg NA NA 0 NA
Succulence (g of water /m2 of projected leaf) LeafSucculence Numeric g m-2 NA NA 0 NA
Leaf projected to half developed area (m2/m2) LeafProjectedToHalfDevelopedArea Numeric m2 m-2 NA NA 0 NA
Minimum conductance of the leaf to water vapor on developed area basis (including cuticule and stomatal leakiness) GminLeaf Numeric mmol m-2 s-1 NA NA 0 NA
Q10 of the initial gmin response to temperature (before Tp) Q10gminPhase1 Numeric NA NA NA NA NA
Q10 of the initial gmin response to temperature (after Tp) Q10gminPhase2 Numeric NA NA NA NA NA
Transition phase for gmin dependence to temperature GminTransitionPhase Numeric Celsius NA NA NA NA
Maintenance respiration rates for leaves RERleaf Numeric g g-1 day-1 NA NA 0 NA
Maintenance respiration rates for living cells of sapwood RERsapwood Numeric g g-1 day-1 NA NA 0 NA
Maintenance respiration rates for fine roots RERfineroot Numeric g g-1 day-1 NA NA 0 NA
Leaf construction costs CCleaf Numeric g g-1 NA NA 0 NA
Sapwood construction costs CCsapwood Numeric g g-1 NA NA 0 NA
Fine root construction costs CCfineroot Numeric g g-1 NA NA 0 NA
Date to start the accumulation of degree days t0gdd Numeric day NA NA NA NA
Degree days for leaf budburst Sgdd Numeric Celsius NA NA NA NA
Base temperature for the calculation of degree days to leaf budburst Tbgdd Numeric Celsius NA NA NA NA
Degree days corresponding to senescence Ssen Numeric Celsius NA NA NA NA
Photoperiod corresponding to start counting senescence Phsen Numeric hour NA NA NA NA
Base temperature for the calculation of degree days to senescence Tbsen Numeric Celsius NA NA NA NA
Discrete values, to allow for any absent/proportional/more than proportional effects of temperature on senescence xsen Integer NA NA 0,1,2 0 2
Discrete values, to allow for any absent/proportional/more than proportional effects of photoperiod on senescence ysen Integer NA NA 0,1,2 0 2
Shade tolerance index according to Valladares and Niinemets ShadeTolerance Numeric NA NA NA 0 5

In the case of Bartlett’s dataset we are interested in points of the vulnerability curve and stomatal behavior. We can check their corresponding names in HarmonizedTraitDefinition. For example, Leaf P50 (MPa) is the water potential corresponding to the 50% conductance loss in leaves, and should be named VCleaf_P50 according to HarmonizedTraitDefinition, and so on. We can use dplyr function rename() to harmonize trait notation. In this case, all plant traits we are interested in are given in units of MPa, and HarmonizedTraitDefinition reports the same units for these traits, so there is no need to harmonize measurement units. The code for notation harmonization could be as follows:

db_var <- db |>
  dplyr::select(Name, "Leaf P50 (MPa)", "Stem P50 (MPa)", "Stem P88 (MPa)", "Stem P12 (MPa)", 
                "Root P50 (MPa)", "Gs P50 (MPa)", "Gs 95 (MPa)") |>
  dplyr::rename(originalName = Name,
                VCleaf_P50 = "Leaf P50 (MPa)",
                VCstem_P50 = "Stem P50 (MPa)",
                VCstem_P12 = "Stem P12 (MPa)",
                VCstem_P88 = "Stem P88 (MPa)",
                VCroot_P50 = "Root P50 (MPa)",
                Gs_P50 = "Gs P50 (MPa)",
                Gs_P95 = "Gs 95 (MPa)") 

Note that we also renamed the column containing the plant species into originalName. The original name represents the taxon name that is used by the data set owner/provider and is key for taxonomic harmonization. The result of this step should contain originalName, plus one column for each harmonized trait, and (preferably) three columns called Reference, DOI and Priority. We can add those columns manually using:

db_var <- db_var |>
  dplyr::mutate(Reference = "Bartlett et al. (2016). The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. PNAS 113: 13098-13103",
                DOI = "10.1073/pnas.1604088113",
                Priority = 3)

Columns Reference and DOI indicates the bibliographic source of the data, whereas Priority allows defining an order in which trait data sources will be processed. Those with highest priority order (lowest value of Priority) will be given preference.

db_var
## # A tibble: 310 × 11
##    originalName    VCleaf_P50 VCstem_P50 VCstem_P88 VCstem_P12 VCroot_P50 Gs_P50
##    <chr>                <dbl>      <dbl>      <dbl>      <dbl>      <dbl>  <dbl>
##  1 Acacia greggii       NA         NA         NA        NA          NA     NA   
##  2 Acer campestre       -1.32      -3.87      -4.60     -3.19       NA     NA   
##  3 Acer grandiden…      NA         -3.66      -7.14     -0.92       -0.86  NA   
##  4 Acer monspessu…      -1.89      -3.31      -4.61     -2.02       -1.6   NA   
##  5 Acer negundo         NA         -1.34      -2.74     -0.451      -0.3   NA   
##  6 Acer pseudopla…      -1.19      -2.37      -2.71     -1.95       NA     NA   
##  7 Acer rubrum          -1.7       -3.9       -6        -2.5        -1.69  NA   
##  8 Acer saccharum       NA         -3.97      NA        NA          -1.5   -1.56
##  9 Adansonia rubr…      NA         -1.1       -2.82     -0.293      NA     NA   
## 10 Adansonia za         NA         -1.7       -3.49     -0.59       NA     NA   
## # ℹ 300 more rows
## # ℹ 4 more variables: Gs_P95 <dbl>, Reference <chr>, DOI <chr>, Priority <dbl>

Note that the kind of trait mapping conducted here, with one column per trait, allows different traits in different columns (i.e. wide format) but it does not store the trait units and therefore they cannot be checked. Another (long) format is recommended where trait names are stored in column Trait, trait values are stored in column Value and units are stored in column Units (see ?check_harmonized_trait).

Taxonomic harmonization

Package traits4models currently relies on World Flora Online for taxonomic harmonization, via package WorldFlora (Kindt 2020) available at CRAN. This latter package requires a static copy of the World Flora Online Taxonomic Backbone data that can be downloaded from the World Flora Online website. Note that you should use a different DOI reference when reporting your harmonization procedures. We are using here v.2024.06. We assume the user has already downloaded the backbone and stored it in a file called classification.csv.

WFO_file <- paste0(DB_path, "data-raw/wfo_backbone/classification.csv")

Taxonomic harmonization is done by calling function harmonize_taxonomy_WFO() with a data frame (where notation and units are already harmonized) and the path to the WFO backbone (we omit the console output):

db_post <- traits4models::harmonize_taxonomy_WFO(db_var, WFO_file)

The function requires that the input data frame contains a column called originalName, to identify the original taxa names (additional columns are simply transferred to the output). It performs both direct and fuzzy matching, which may lead to large processing time for large datasets. If we inspect the resulting data frame, we will see the additional columns, informing about accepted names and parent taxonomic entities:

head(db_post)
## # A tibble: 6 × 17
##   originalName  acceptedName acceptedNameAuthorship family genus specificEpithet
##   <chr>         <chr>        <chr>                  <chr>  <chr> <chr>          
## 1 Acacia gregg… Senegalia g… (A.Gray) Britton & Ro… Fabac… Sene… greggii        
## 2 Acer campest… Acer campes… L.                     Sapin… Acer  campestre      
## 3 Acer grandid… Acer saccha… (Nutt.) Desmarais      Sapin… Acer  saccharum      
## 4 Acer monspes… Acer monspe… L.                     Sapin… Acer  monspessulanum 
## 5 Acer negundo  Acer negundo L.                     Sapin… Acer  negundo        
## 6 Acer pseudop… Acer pseudo… L.                     Sapin… Acer  pseudoplatanus 
## # ℹ 11 more variables: taxonRank <chr>, VCleaf_P50 <dbl>, VCstem_P50 <dbl>,
## #   VCstem_P88 <dbl>, VCstem_P12 <dbl>, VCroot_P50 <dbl>, Gs_P50 <dbl>,
## #   Gs_P95 <dbl>, Reference <chr>, DOI <chr>, Priority <dbl>

Checking harmonized trait data

The packages includes function check_harmonized_trait() to check whether a given data frame conforms in structure and content to what is later required for parameter table filling:

##  Column 'checkVersion' should preferably be defined.
##  The data frame (wide format) is acceptable as harmonized trait data source.

The data set is acceptable, but the package recommends storing the package version used for harmonization checking, which we can do using:

db_post <- db_post |>
   dplyr::mutate(checkVersion = as.character(packageVersion("traits4models")))
check_harmonized_trait(db_post)
##  The data frame (wide format) is acceptable as harmonized trait data source.

Now the data set is ready to be used in parameter estimation. As an example of checking, we can also run the same checking function with the data base before taxonomic harmonization:

## ! Taxonomy columns missing: acceptedName acceptedNameAuthorship family genus specificEpithet taxonRank
##  Column 'checkVersion' should preferably be defined.
## ! The data frame is not acceptable as harmonized trait data source.

Storing harmonized dataset

Harmonized data tables can be stored in .csv text format or compressed .rds format. Moreover, all tables should be stored in the same directory, here in the Products/harmonized/ path.

file_out <- paste0(DB_path, "data/harmonized_trait_sources/Bartlett_et_al_2016.rds")
saveRDS(db_post, file_out)

Accessing harmonized trait data

List of harmonized trait databases

As mentioned in the introduction, here it is assumed that a set of plant trait databases have been harmonized. In our case, harmonized data files have been stored in the following path:

harmonized_trait_path <- "~/OneDrive/mcaceres_work/model_development/medfate_parameterization/traits_and_models/data/harmonized_trait_sources"

We can list the set of harmonized sources using:

trait_files <- list.files(path = harmonized_trait_path, full.names = FALSE)
head(trait_files)
## [1] "00_compilation_CCfineroot.rds"              
## [2] "00_compilation_CCleaf.rds"                  
## [3] "00_compilation_CCsapwood.rds"               
## [4] "00_compilation_FineFuelRatio.rds"           
## [5] "00_compilation_Flammability_HeatContent.rds"
## [6] "00_compilation_Flammability_SAV.rds"

Querying data for particular traits or species

Before filling any species parameter table, it may be useful to inspect the amount of information available for particular traits or species. Package trait4models provides a couple of utility functions for this. For example, we can load all values for Gswmin, the minimum stomatal conductance, using function get_trait_data():

gsmin_data <- get_trait_data(harmonized_trait_path, "Gswmin",
                             progress = FALSE)
head(gsmin_data)
##       originalName     acceptedName acceptedNameAuthorship   family  genus
## 1       Abies alba       Abies alba                  Mill. Pinaceae  Abies
## 2 Abies lasiocarpa Abies lasiocarpa          (Hook.) Nutt. Pinaceae  Abies
## 3   Abies sibirica   Abies sibirica                 Ledeb. Pinaceae  Abies
## 4       Acacia koa       Acacia koa                 A.Gray Fabaceae Acacia
## 5  Acacia maidenii  Acacia maidenii               F.Muell. Fabaceae Acacia
## 6   Acacia mangium   Acacia mangium                 Willd. Fabaceae Acacia
##   specificEpithet taxonRank  Trait       Value       Units
## 1            alba   species Gswmin 0.001500000 mol s-1 m-2
## 2      lasiocarpa   species Gswmin 0.004779429 mol s-1 m-2
## 3        sibirica   species Gswmin 0.003044600 mol s-1 m-2
## 4             koa   species Gswmin 0.003800000 mol s-1 m-2
## 5        maidenii   species Gswmin 0.004200000 mol s-1 m-2
## 6         mangium   species Gswmin 0.004750000 mol s-1 m-2
##                                                                                                                                                                                                          Reference
## 1 Wang et al. (2024) Water loss after stomatal closure: quantifying leaf  minimum conductance and minimal water use in nine  temperate European tree species during a severe drought. Tree Physiology, 44, tpae027
## 2                                            Duursma et al. (2018) On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytologist 221, 693-705
## 3                                            Duursma et al. (2018) On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytologist 221, 693-705
## 4                                            Duursma et al. (2018) On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytologist 221, 693-705
## 5                                            Duursma et al. (2018) On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytologist 221, 693-705
## 6                                            Duursma et al. (2018) On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytologist 221, 693-705
##                        DOI                 OriginalReference Priority
## 1 10.1093/treephys/tpae027                              <NA>        1
## 2        10.1111/nph.15395         Boyce and Saunders (2000)        1
## 3        10.1111/nph.15395    Brodribb McAdam, et al. (2014)        1
## 4        10.1111/nph.15395 Pasquet-Kok Creese, et al. (2010)        1
## 5        10.1111/nph.15395      Warren Aranda, et al. (2011)        1
## 6        10.1111/nph.15395      Warren Aranda, et al. (2011)        1
##   checkVersion
## 1        0.2.2
## 2        0.2.2
## 3        0.2.2
## 4        0.2.2
## 5        0.2.2
## 6        0.2.2

Analogously, if we are interested in querying trait information for a particular taxa, we can use function get_taxon_data():

ph_data <- get_taxon_data(harmonized_trait_path, "Pinus halepensis",
                          progress = FALSE)
head(ph_data)
##       originalName     acceptedName acceptedNameAuthorship   family genus
## 1 Pinus halepensis Pinus halepensis                  Mill. Pinaceae Pinus
## 2 Pinus halepensis Pinus halepensis                  Mill. Pinaceae Pinus
## 3 Pinus halepensis Pinus halepensis                  Mill. Pinaceae Pinus
## 4 Pinus halepensis Pinus halepensis                  Mill. Pinaceae Pinus
## 5 Pinus halepensis Pinus halepensis                  Mill. Pinaceae Pinus
## 8 Pinus halepensis Pinus halepensis                  Mill. Pinaceae Pinus
##   specificEpithet taxonRank      Trait        Value Units
## 1      halepensis   species   LifeForm Phanerophyte  <NA>
## 2      halepensis   species   LifeForm Phanerophyte  <NA>
## 3      halepensis   species   LifeForm Phanerophyte  <NA>
## 4      halepensis   species GrowthForm         Tree  <NA>
## 5      halepensis   species GrowthForm         Tree  <NA>
## 8      halepensis   species  LeafShape       Needle  <NA>
##                                                                                                              Reference
## 1 Kattge et al. (2020) TRY plant trait database – enhanced coverage and open access. Global Change Biology 26:119–188.
## 2 Kattge et al. (2020) TRY plant trait database – enhanced coverage and open access. Global Change Biology 26:119–188.
## 3        Tavşanoǧlu & Pausas (2018) A functional trait database for Mediterranean Basin plants. Scientific Data 5,1-18
## 4 Kattge et al. (2020) TRY plant trait database – enhanced coverage and open access. Global Change Biology 26:119–188.
## 5            Liu et al. (2019) Hydraulic traits are coordinated with maximum plant height at the global scale. Science
## 8 Kattge et al. (2020) TRY plant trait database – enhanced coverage and open access. Global Change Biology 26:119–188.
##                          DOI Priority checkVersion
## 1 10.1038/s41597-021-01006-6        1        0.2.2
## 2 10.1038/s41597-021-01006-6        1        0.2.2
## 3     10.1038/sdata.2018.135        1        0.2.2
## 4 10.1038/s41597-021-01006-6        1        0.2.2
## 5     10.1126/sciadv.aav1332        2        0.2.2
## 8 10.1038/s41597-021-01006-6        1        0.2.2
##                                                                                                                                                                                                                                                                        OriginalReference
## 1                                                                                                           Sophie Gachet, Errol V\xe9la, Thierry Tatoni, 2005, BASECO: a floristic and ecological database of Mediterranean French flora. Biodiversity and Conservation 14(4):1023-1034
## 2                                                 Dressler S, M Schmidt, G Zizka (2014) Introducing African Plants\x97A Photo Guide\x97An Interactive Photo Data-Base and Rapid Identification Tool for Continental Africa. Taxon 63(5) 1159-1161 DOI: http://dx.doi.org/10.12705/635.26
## 3 Greuter, W., Burdet, H. M., Long, G. (editors) (1984-1989). Med-Cheklist. A critical inventory of vascular plants of the circum-mediterranean countries. Conservatoire et Jardin Botanique de la Ville de Genève/Botanischer Garten & Botanisches Museum Berlin-Dahlem, Genève/Berlin.
## 4                                                                                                                      Weigelt, P., C. K\xf6nig, and H. Kreft (2019) GIFT \x96 A Global Inventory of Floras and Traits for macroecology and biogeography. bioRxiv doi.org/10.1101/535005
## 5                                                                                                                                                                                                                                                                                   <NA>
## 8                                                                                                                                                                                                                                                                                 unpub.

References

Bartlett, Megan K, Tamir Klein, Steven Jansen, Brendan Choat, and Lawren Sack. 2016. “The Correlations and Sequence of Plant Stomatal, Hydraulic, and Wilting Responses to Drought.” Proceedings of the National Academy of Sciences of the United States of America 113 (46): 13098–103. https://doi.org/10.1073/pnas.1604088113.
Kattge, Jens, Gerhard Bönisch, Sandra Díaz, Sandra Lavorel, Iain Colin Prentice, Paul Leadley, Susanne Tautenhahn, et al. 2020. TRY Plant Trait Database – Enhanced Coverage and Open Access.” Global Change Biology 26 (1): 119–88. https://doi.org/10.1111/gcb.14904.
Kindt, Roeland. 2020. WorldFlora: An R Package for Exact and Fuzzy Matching of Plant Names Against the World Flora Online Taxonomic Backbone Data.” Applications in Plant Sciences 8 (9): e11388. https://doi.org/10.1002/aps3.11388.