library(meteospain)
library(ggplot2)
library(ggforce)
library(units)
#> udunits database from /usr/share/xml/udunits/udunits2.xml
library(sf)
#> Linking to GEOS 3.12.1, GDAL 3.8.4, PROJ 9.4.0; sf_use_s2() is TRUE
library(keyring)

AEMET service

AEMET is the Spanish national meteorologic service, and is the national meteorology authority providing quality data for public and research use, as well as prediction products and disaster warning system. meteospain only access to the automatic meteorological stations network data.

AEMET options

Temporal resolution

meteospain offers access to the AEMET API at different temporal resolutions:

  • “current_day”, returning the latest 24 hours of measures for all or selected stations.
  • “daily”, returning the daily aggregated measures for all or selected stations.
  • “monthly”, returning the monthly aggregated measures for only one station.
  • “yearly”, returning the yearly aggregated measures for only one station.

In “daily”, a start_date (and optionally an end_date) arguments must be provided, indicating the period from which retrieve the data.
In “monthly” and “yearly”, only the years in start_date and end_date are used, returning all year monthly or yearly values (i.e start_date = as.Date("2020-12-01") is the same as start_date = as.Date("2020-01-01") as both will return all 2020 measures).

Stations

meteospain access the data in the AEMET API collecting all stations. If a character vector of stations codes is supplied in the stations argument, a filter step is done before returning the data to maintain only the stations supplied.

The exception for this are “monthly” and “yearly” temporal resolutions. AEMET API only allows for one station to be retrieved.

AEMET API Key

AEMET API only allow access to the data with a personal API Key. This token must be included in the api_key argument of aemet_options function.
To obtain the API Key, please visit https://opendata.aemet.es/centrodedescargas/inicio and follow the instructions at “Obtencion de API Key”.

It is not advisable to use the keys directly in any script shared or publicly available (github…), neither store them in plain text files. One option is using the keyring package for managing and accessing keys:

install.packages('keyring')
library(keyring)
key_set('aemet') # A prompt asking for the secret (the API Key) will appear.

Examples

# current day, all stations
api_options <- aemet_options(
  resolution = 'current_day',
  api_key = key_get('aemet')
)
api_options
#> $resolution
#> [1] "current_day"
#> 
#> $start_date
#> [1] "2024-10-16"
#> 
#> $end_date
#> [1] "2024-10-16"
#> 
#> $stations
#> NULL
#> 
#> $api_key
#> [1] "my_api_key"
# daily, all stations
api_options <- aemet_options(
  resolution = 'daily',
  start_date = as.Date('2020-04-25'), end_date = as.Date('2020-05-08'),
  api_key = key_get('aemet')
)
api_options
#> $resolution
#> [1] "daily"
#> 
#> $start_date
#> [1] "2020-04-25"
#> 
#> $end_date
#> [1] "2020-05-08"
#> 
#> $stations
#> NULL
#> 
#> $api_key
#> [1] "my_api_key"
# monthly, only one station because AEMET API limitations
api_options <- aemet_options(
  resolution = 'monthly',
  start_date = as.Date('2020-04-25'), end_date = as.Date('2020-05-25'),
  station = "0149X",
  api_key = key_get('aemet')
)
api_options
#> $resolution
#> [1] "monthly"
#> 
#> $start_date
#> [1] "2020-01-01"
#> 
#> $end_date
#> [1] "2020-12-31"
#> 
#> $stations
#> [1] "0149X"
#> 
#> $api_key
#> [1] "my_api_key"

AEMET stations info

Accessing station metadata for AEMET is simple:

get_stations_info_from('aemet', api_options)
#> Simple feature collection with 947 features and 5 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: -18.115 ymin: 27.66528 xmax: 4.323889 ymax: 43.78611
#> Geodetic CRS:  WGS 84
#> # A tibble: 947 × 6
#>    service station_id station_name                  station_province altitude
#>  * <chr>   <chr>      <chr>                         <chr>                 [m]
#>  1 aemet   B013X      ESCORCA, LLUC                 ILLES BALEARS         490
#>  2 aemet   B051A      SÓLLER, PUERTO                ILLES BALEARS           5
#>  3 aemet   B087X      BANYALBUFAR                   ILLES BALEARS          60
#>  4 aemet   B103B      ANDRATX - SANT ELM            ILLES BALEARS          52
#>  5 aemet   B158X      CALVIÀ, ES CAPDELLÀ           ILLES BALEARS          50
#>  6 aemet   B228       PALMA, PUERTO                 ILLES BALEARS           3
#>  7 aemet   B236C      PALMA, UNIVERSIDAD            ILLES BALEARS          95
#>  8 aemet   B248       SIERRA DE ALFABIA, BUNYOLA    ILLES BALEARS        1030
#>  9 aemet   B275E      SON BONET, AEROPUERTO         BALEARES               49
#> 10 aemet   B278       PALMA DE MALLORCA, AEROPUERTO ILLES BALEARS           8
#> # ℹ 937 more rows
#> # ℹ 1 more variable: geometry <POINT [°]>

AEMET data

api_options <- aemet_options(
  resolution = 'daily',
  start_date = as.Date('2020-04-25'),
  api_key = key_get('aemet')
)
spain_20200425 <- get_meteo_from('aemet', options = api_options)
#>  Data received
#> Trying again in 60 seconds
#>  © AEMET. Autorizado el uso de la información y su reproducción citando a
#>   AEMET como autora de la misma.
#> https://www.aemet.es/es/nota_legal
spain_20200425
#> Simple feature collection with 846 features and 15 fields
#> Geometry type: POINT
#> Dimension:     XY
#> Bounding box:  xmin: -18.115 ymin: 27.66528 xmax: 4.323889 ymax: 43.78611
#> Geodetic CRS:  WGS 84
#> # A tibble: 846 × 16
#>    timestamp           service station_id station_name station_province altitude
#>    <dttm>              <chr>   <chr>      <chr>        <chr>                 [m]
#>  1 2020-04-25 00:00:00 aemet   0009X      "ALFORJA"    TARRAGONA             406
#>  2 2020-04-25 00:00:00 aemet   0016A      "REUS AEROP… TARRAGONA              71
#>  3 2020-04-25 00:00:00 aemet   0016B      "REUS (CENT… TARRAGONA             118
#>  4 2020-04-25 00:00:00 aemet   0034X      "VALLS"      TARRAGONA             233
#>  5 2020-04-25 00:00:00 aemet   0042Y      "TARRAGONA " TARRAGONA              55
#>  6 2020-04-25 00:00:00 aemet   0061X      "PONTONS"    BARCELONA             632
#>  7 2020-04-25 00:00:00 aemet   0066X      "VILAFRANCA… BARCELONA             177
#>  8 2020-04-25 00:00:00 aemet   0073X      "SITGES"     BARCELONA              58
#>  9 2020-04-25 00:00:00 aemet   0076       "BARCELONA … BARCELONA               4
#> 10 2020-04-25 00:00:00 aemet   0092X      "BERGA"      BARCELONA             682
#> # ℹ 836 more rows
#> # ℹ 10 more variables: mean_temperature [°C], min_temperature [°C],
#> #   max_temperature [°C], mean_relative_humidity [%],
#> #   min_relative_humidity [%], max_relative_humidity [%],
#> #   precipitation [L/m^2], mean_wind_speed [m/s], insolation [h],
#> #   geometry <POINT [°]>

Visually:

spain_20200425 |>
  units::drop_units() |>
  ggplot() +
  geom_sf(aes(colour = mean_temperature)) +
  scale_colour_viridis_c()


spain_20200425 |>
  ggplot() +
  geom_histogram(aes(x = precipitation))
#> Warning: The `scale_name` argument of `continuous_scale()` is deprecated as of ggplot2
#> 3.5.0.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
#> Warning: Removed 41 rows containing non-finite outside the scale range
#> (`stat_bin()`).