Extract or estimate variables from landscape objects (class 'sf').
Usage
extract_variables(x, vars = "land_cover_type", SpParams = NULL, ...)
plot_variable(x, variable = "land_cover_type", SpParams = NULL, r = NULL, ...)Arguments
- x
An object of class
sfwith the appropriate columns.- vars
A string vector with the name of the variables to extract (see details).
- SpParams
An optional data frame with species parameters (see
SpParamsMED), required for some forest stand variables.- ...
Additional arguments (not used).
- variable
A string with the name of the variables to draw (see details).
- r
An optional object of class
SpatRaster, defining the raster topology. If supplied, values are shown as raster pixels. Otherwise, points are drawn.
Value
Function extract_variables() returns an object of class sf with the desired variables.
Function plot_variables() returns a ggplot object.
Details
The following string values are available for vars.
Topography:
"elevation": Elevation in m."slope": Slope in degrees."aspect": Slope in degrees."land_cover_type": Land cover type.
Snowpack and soil:
"snowpack": Snowpack water equivalent (mm). Requires 'snowpack' to be defined inx."soil_vol_extract": Total water extractable volume (mm)."soil_vol_sat": Total water volume at saturation (mm)."soil_vol_fc": Total water volume at field capacity (mm)."soil_vol_wp": Total water volume at wilting point (mm)."soil_vol_curr": Current total water volume (mm)."soil_rwc_curr": Current soil relative water content (%)."soil_rew_curr": Current soil relative extractable water (%)."soil_theta_curr": Current soil moisture content (% vol.)"soil_psi_curr": Current soil water potential (MPa).
Hydrogeology:
"depth_to_bedrock": Depth to bedrock (m)."bedrock_porosity": Bedrock porosity."bedrock_conductivity": Bedrock conductivity (m/day)."channel": River channel network. Requires 'channel' to be defined inx.
Aquifer (requires 'aquifer' to be defined in x):
"aquifer_elevation": Aquifer elevation over bedrock (m)."depth_to_aquifer": Depth to aquifer (m)."aquifer": Aquifer volume (mm).
Forest stand:
"basal_area": Basal area (m2/ha)."tree_density": Tree density (ind/ha)."mean_tree_height": Mean tree height (cm)."dominant_tree_height": Dominant tree height (cm)."dominant_tree_diameter": Dominant tree diameter (cm)."quadratic_mean_tree_diameter": Quadratic mean tree diameter (cm)."hart_becking_index": Hart-Becking index."leaf_area_index": Leaf area index (m2/m2). RequiresSpParamsto be supplied."foliar_biomass": Foliar biomass (kg/m2). RequiresSpParamsto be supplied."fuel_loading": Fine live fuel loading (kg/m2). RequiresSpParamsto be supplied."shrub_volume": Shrub volume (m3/m2). RequiresSpParamsto be supplied.
Examples
# Load data and species parameters from medfate
data(example_ifn)
data(SpParamsMED)
# Calculate basal area and leaf area index
# for all forest stands
extract_variables(example_ifn, vars = c("basal_area", "leaf_area_index"),
SpParams = SpParamsMED)
#> Simple feature collection with 100 features and 2 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 1.817095 ymin: 41.93301 xmax: 2.142956 ymax: 41.99881
#> Geodetic CRS: WGS 84
#> # A tibble: 100 × 3
#> geometry basal_area leaf_area_index
#> <POINT [°]> <dbl> <dbl>
#> 1 (2.130641 41.99872) 13.9 5.29
#> 2 (2.142714 41.99881) 15.7 2.91
#> 3 (1.828998 41.98704) 0 0.833
#> 4 (1.841068 41.98716) 0 3.03
#> 5 (1.853138 41.98728) 0 1.79
#> 6 (1.901418 41.98775) 0 2.76
#> 7 (1.937629 41.98809) 19.7 5.88
#> 8 (1.949699 41.9882) 9.91 3.45
#> 9 (1.96177 41.98831) 0 2.41
#> 10 (1.97384 41.98842) 19.8 3.75
#> # ℹ 90 more rows
