Extract or estimate variables from landscape objects (class 'sf').
Usage
extract_variables(x, vars = "land_cover_type", SpParams = NULL, ...)
plot_variable(x, variable = "land_cover_type", SpParams = NULL, r = NULL, ...)
Arguments
- x
An object of class
sf
with the appropriate columns.- vars
A string vector with the name of the variables to extract (see details).
- SpParams
A data frame with species parameters (see
SpParamsMED
), required for most forest stand variables.- ...
Additional arguments (not used).
- variable
A string with the name of the variables to draw (see details).
- r
An object of class
SpatRaster
, defining the raster topology.
Value
Function extract_variables()
returns an object of class sf
with the desired variables.
Function plot_variables()
returns a ggplot object.
Details
The following string values are available for vars
.
Topography:
"elevation"
: Elevation in m."slope"
: Slope in degrees."aspect"
: Slope in degrees."land_cover_type"
: Land cover type.
Soil:
"soil_vol_extract"
: Total water extractable volume (mm)."soil_vol_sat"
: Total water volume at saturation (mm)."soil_vol_fc"
: Total water volume at field capacity (mm)."soil_vol_wp"
: Total water volume at wilting point (mm)."soil_vol_curr"
: Current total water volume (mm)."soil_rwc_curr"
: Current soil relative water content (%)."soil_rew_curr"
: Current soil relative extractable water (%)."soil_theta_curr"
: Current soil moisture content (% vol.)"soil_psi_curr"
: Current soil water potential (MPa).
Watershed:
"depth_to_bedrock"
: Depth to bedrock (m)."bedrock_porosity"
: Bedrock porosity."bedrock_conductivity"
: Bedrock conductivity (m/day)."aquifer_elevation"
: Aquifer elevation over bedrock (m)."depth_to_aquifer"
: Depth to aquifer (m)."aquifer"
: Aquifer volume (mm)."snowpack"
: Snowpack water equivalent (mm).
Forest stand:
"basal_area"
: Basal area (m2/ha)."tree_density"
: Tree density (ind/ha)."mean_tree_height"
: Mean tree height (cm)."dominant_tree_height"
: Dominant tree height (cm)."dominant_tree_diameter"
: Dominant tree diameter (cm)."quadratic_mean_tree_diameter"
: Quadratic mean tree diameter (cm)."hart_becking_index"
: Hart-Becking index."leaf_area_index"
: Leaf area index (m2/m2)."foliar_biomass"
: Foliar biomass (kg/m2)."fuel_loading"
: Fine live fuel loading (kg/m2)."shrub_volume"
: Shrub volume (m3/m2).
Examples
# Load data and species parameters from medfate
data(example_ifn)
data(SpParamsMED)
# Calculate basal area and leaf area index
# for all forest stands
extract_variables(example_ifn, vars = c("basal_area", "leaf_area_index"),
SpParams = SpParamsMED)
#> Simple feature collection with 100 features and 2 fields
#> Geometry type: POINT
#> Dimension: XY
#> Bounding box: xmin: 1.817095 ymin: 41.93301 xmax: 2.142956 ymax: 41.99881
#> Geodetic CRS: WGS 84
#> # A tibble: 100 × 3
#> geometry basal_area leaf_area_index
#> <POINT [°]> <dbl> <dbl>
#> 1 (2.130641 41.99872) 13.9 5.29
#> 2 (2.142714 41.99881) 15.7 2.91
#> 3 (1.828998 41.98704) 0 0.833
#> 4 (1.841068 41.98716) 0 3.03
#> 5 (1.853138 41.98728) 0 1.79
#> 6 (1.901418 41.98775) 0 2.76
#> 7 (1.937629 41.98809) 19.7 5.88
#> 8 (1.949699 41.9882) 9.91 3.45
#> 9 (1.96177 41.98831) 0 2.41
#> 10 (1.97384 41.98842) 19.8 3.75
#> # ℹ 90 more rows