Skip to contents

About this vignette

This document describes how to run the forest dynamics model of medfate, described in De Cáceres et al. (2023) and implemented in function fordyn(). This document is meant to teach users to run the simulation model with function fordyn(). Details of the model design and formulation can be found at the corresponding chapters of the medfate book.

Because the model builds on the growth and water balance models, the reader is assumed here to be familiarized with spwb() and growth() (otherwise read vignettes Basic water balance and Forest growth).

Preparing model inputs

Any forest dynamics model needs information on climate, vegetation and soils of the forest stand to be simulated. Moreover, since models in medfate differentiate between species, information on species-specific model parameters is also needed. In this subsection we explain the different steps to prepare the data needed to run function fordyn().

Model inputs are explained in greater detail in vignettes Understanding model inputs and Preparing model inputs. Here we only review the different steps required to run function fordyn().

Soil, vegetation, meteorology and species data

Soil information needs to be entered as a data frame with soil layers in rows and physical attributes in columns. Soil physical attributes can be initialized to default values, for a given number of layers, using function defaultSoilParams():

examplesoil <- defaultSoilParams(4)
examplesoil
##   widths clay sand om nitrogen  bd rfc
## 1    300   25   25 NA       NA 1.5  25
## 2    700   25   25 NA       NA 1.5  45
## 3   1000   25   25 NA       NA 1.5  75
## 4   2000   25   25 NA       NA 1.5  95

As explained in the package overview, models included in medfate were primarily designed to be ran on forest inventory plots. Here we use the example object provided with the package:

data(exampleforest)
exampleforest
## $treeData
##            Species   N   DBH Height Z50  Z95
## 1 Pinus halepensis 168 37.55    800 100  600
## 2     Quercus ilex 384 14.60    660 300 1000
## 
## $shrubData
##             Species Cover Height Z50  Z95
## 1 Quercus coccifera  3.75     80 200 1000
## 
## $herbCover
## [1] 10
## 
## $herbHeight
## [1] 20
## 
## $seedBank
## [1] Species Percent
## <0 rows> (or 0-length row.names)
## 
## attr(,"class")
## [1] "forest" "list"

Importantly, a data frame with daily weather for the period to be simulated is required. Here we use the default data frame included with the package:

data(examplemeteo)
head(examplemeteo)
##        dates MinTemperature MaxTemperature Precipitation MinRelativeHumidity
## 1 2001-01-01     -0.5934215       6.287950      4.869109            65.15411
## 2 2001-01-02     -2.3662458       4.569737      2.498292            57.43761
## 3 2001-01-03     -3.8541036       2.661951      0.000000            58.77432
## 4 2001-01-04     -1.8744860       3.097705      5.796973            66.84256
## 5 2001-01-05      0.3288287       7.551532      1.884401            62.97656
## 6 2001-01-06      0.5461322       7.186784     13.359801            74.25754
##   MaxRelativeHumidity Radiation WindSpeed
## 1           100.00000  12.89251  2.000000
## 2            94.71780  13.03079  7.662544
## 3            94.66823  16.90722  2.000000
## 4            95.80950  11.07275  2.000000
## 5           100.00000  13.45205  7.581347
## 6           100.00000  12.84841  6.570501

Finally, simulations in medfate require a data frame with species parameter values, which we load using defaults for Catalonia (NE Spain):

data("SpParamsMED")

Simulation control

Apart from data inputs, the behaviour of simulation models can be controlled using a set of global parameters. The default parameterization is obtained using function defaultControl():

control <- defaultControl("Granier")

Here we will run simulations of forest dynamics using the basic water balance model (i.e. transpirationMode = "Granier"). The complexity of the soil water balance calculations can be changed by using "Sperry" as input to defaultControl(). However, when running fordyn() sub-daily output will never be stored (i.e. setting subdailyResults = TRUE is useless).

Executing the forest dynamics model

In this vignette we will fake a ten-year weather input by repeating the example weather data frame ten times.

meteo <- rbind(examplemeteo, examplemeteo, examplemeteo, examplemeteo,
                    examplemeteo, examplemeteo, examplemeteo, examplemeteo,
                    examplemeteo, examplemeteo)
meteo$dates <- as.character(seq(as.Date("2001-01-01"), 
                                as.Date("2010-12-29"), by="day"))

Now we run the forest dynamics model using all inputs (note that no intermediate input object is needed, as in spwb() or growth()):

fd<-fordyn(exampleforest, examplesoil, SpParamsMED, meteo, control, 
           latitude = 41.82592, elevation = 100)
## Simulating year 2001 (1/10):  (a) Growth/mortality
## Package 'meteoland' [ver. 2.2.4]
## , (b) Regeneration nT = 2 nS = 1
## Simulating year 2002 (2/10):  (a) Growth/mortality, (b) Regeneration nT = 2 nS = 1
## Simulating year 2003 (3/10):  (a) Growth/mortality, (b) Regeneration nT = 2 nS = 1
## Simulating year 2004 (4/10):  (a) Growth/mortality, (b) Regeneration nT = 2 nS = 1
## Simulating year 2005 (5/10):  (a) Growth/mortality, (b) Regeneration nT = 2 nS = 1
## Simulating year 2006 (6/10):  (a) Growth/mortality, (b) Regeneration nT = 2 nS = 1
## Simulating year 2007 (7/10):  (a) Growth/mortality, (b) Regeneration nT = 2 nS = 1
## Simulating year 2008 (8/10):  (a) Growth/mortality, (b) Regeneration nT = 2 nS = 1
## Simulating year 2009 (9/10):  (a) Growth/mortality, (b) Regeneration nT = 2 nS = 1
## Simulating year 2010 (10/10):  (a) Growth/mortality, (b) Regeneration nT = 2 nS = 1

It is worth noting that, while fordyn() calls function growth() internally for each simulated year, the verbose option of the control parameters only affects function fordyn() (i.e. all console output from growth() is hidden). Recruitment and summaries are done only once a year at the level of function fordyn().

Inspecting model outputs

Stand, species and cohort summaries and plots

Among other outputs, function fordyn() calculates standard summary statistics that describe the structural and compositional state of the forest at each time step. For example, we can access stand-level statistics using:

fd$StandSummary
##    Step NumTreeSpecies NumTreeCohorts NumShrubSpecies NumShrubCohorts
## 1     0              2              2               1               1
## 2     1              2              2               1               1
## 3     2              2              2               1               1
## 4     3              2              2               1               1
## 5     4              2              2               1               1
## 6     5              2              2               1               1
## 7     6              2              2               1               1
## 8     7              2              2               1               1
## 9     8              2              2               1               1
## 10    9              2              2               1               1
## 11   10              2              2               1               1
##    TreeDensityLive TreeBasalAreaLive DominantTreeHeight DominantTreeDiameter
## 1         552.0000          25.03330           800.0000             37.55000
## 2         551.3664          25.20608           806.1349             37.66427
## 3         550.7271          25.37991           812.2899             37.77951
## 4         550.0821          25.55420           818.4330             37.89512
## 5         549.4296          25.72846           824.5461             38.01077
## 6         548.7731          25.90244           830.6197             38.12627
## 7         548.1108          26.07567           836.6486             38.24151
## 8         547.4429          26.24831           842.6313             38.35647
## 9         546.7673          26.42020           848.5662             38.47111
## 10        546.0879          26.59156           854.4526             38.58539
## 11        545.4065          26.76259           860.2914             38.69934
##    QuadraticMeanTreeDiameter HartBeckingIndex ShrubCoverLive BasalAreaDead
## 1                   24.02949         53.20353       3.750000    0.00000000
## 2                   24.12613         52.82897       3.092002    0.03916800
## 3                   24.22322         52.45909       3.139798    0.03982580
## 4                   24.32050         52.09585       3.188170    0.04049396
## 5                   24.41777         51.74031       3.237219    0.04128410
## 6                   24.51483         51.39269       3.286758    0.04185535
## 7                   24.61153         51.05317       3.336766    0.04254437
## 8                   24.70793         50.72161       3.387265    0.04323866
## 9                   24.80401         50.39796       3.438831    0.04405921
## 10                  24.89979         50.08190       3.489708    0.04464393
## 11                  24.99534         49.77305       3.541115    0.04510400
##    ShrubCoverDead BasalAreaCut ShrubCoverCut
## 1     0.000000000            0             0
## 2     0.005308865            0             0
## 3     0.004784383            0             0
## 4     0.004858246            0             0
## 5     0.004946676            0             0
## 6     0.005008905            0             0
## 7     0.005085388            0             0
## 8     0.005162607            0             0
## 9     0.005255279            0             0
## 10    0.005319864            0             0
## 11    0.005368564            0             0

Species-level analogous statistics are shown using:

fd$SpeciesSummary
##    Step           Species NumCohorts TreeDensityLive TreeBasalAreaLive
## 1     0  Pinus halepensis          1        168.0000         18.604547
## 2     0 Quercus coccifera          1              NA                NA
## 3     0      Quercus ilex          1        384.0000          6.428755
## 4     1  Pinus halepensis          1        167.6992         18.684443
## 5     1 Quercus coccifera          1              NA                NA
## 6     1      Quercus ilex          1        383.6671          6.521640
## 7     2  Pinus halepensis          1        167.3956         18.764917
## 8     2 Quercus coccifera          1              NA                NA
## 9     2      Quercus ilex          1        383.3314          6.614992
## 10    3  Pinus halepensis          1        167.0892         18.845380
## 11    3 Quercus coccifera          1              NA                NA
## 12    3      Quercus ilex          1        382.9929          6.708824
## 13    4  Pinus halepensis          1        166.7790         18.925382
## 14    4 Quercus coccifera          1              NA                NA
## 15    4      Quercus ilex          1        382.6505          6.803075
## 16    5  Pinus halepensis          1        166.4668         19.004926
## 17    5 Quercus coccifera          1              NA                NA
## 18    5      Quercus ilex          1        382.3063          6.897510
## 19    6  Pinus halepensis          1        166.1517         19.083803
## 20    6 Quercus coccifera          1              NA                NA
## 21    6      Quercus ilex          1        381.9591          6.991865
## 22    7  Pinus halepensis          1        165.8338         19.161973
## 23    7 Quercus coccifera          1              NA                NA
## 24    7      Quercus ilex          1        381.6091          7.086334
## 25    8  Pinus halepensis          1        165.5121         19.239286
## 26    8 Quercus coccifera          1              NA                NA
## 27    8      Quercus ilex          1        381.2552          7.180910
## 28    9  Pinus halepensis          1        165.1884         19.315913
## 29    9 Quercus coccifera          1              NA                NA
## 30    9      Quercus ilex          1        380.8995          7.275647
## 31   10  Pinus halepensis          1        164.8637         19.391970
## 32   10 Quercus coccifera          1              NA                NA
## 33   10      Quercus ilex          1        380.5428          7.370624
##    ShrubCoverLive BasalAreaDead ShrubCoverDead BasalAreaCut ShrubCoverCut
## 1              NA   0.000000000             NA            0            NA
## 2        3.750000            NA    0.000000000           NA             0
## 3              NA   0.000000000             NA            0            NA
## 4              NA   0.033509817             NA            0            NA
## 5        3.092002            NA    0.005308865           NA             0
## 6              NA   0.005658184             NA            0            NA
## 7              NA   0.034032872             NA            0            NA
## 8        3.139798            NA    0.004784383           NA             0
## 9              NA   0.005792932             NA            0            NA
## 10             NA   0.034563773             NA            0            NA
## 11       3.188170            NA    0.004858246           NA             0
## 12             NA   0.005930183             NA            0            NA
## 13             NA   0.035197604             NA            0            NA
## 14       3.237219            NA    0.004946676           NA             0
## 15             NA   0.006086497             NA            0            NA
## 16             NA   0.035643831             NA            0            NA
## 17       3.286758            NA    0.005008905           NA             0
## 18             NA   0.006211519             NA            0            NA
## 19             NA   0.036189616             NA            0            NA
## 20       3.336766            NA    0.005085388           NA             0
## 21             NA   0.006354757             NA            0            NA
## 22             NA   0.036738863             NA            0            NA
## 23       3.387265            NA    0.005162607           NA             0
## 24             NA   0.006499793             NA            0            NA
## 25             NA   0.037394259             NA            0            NA
## 26       3.438831            NA    0.005255279           NA             0
## 27             NA   0.006664956             NA            0            NA
## 28             NA   0.037848416             NA            0            NA
## 29       3.489708            NA    0.005319864           NA             0
## 30             NA   0.006795519             NA            0            NA
## 31             NA   0.038196097             NA            0            NA
## 32       3.541115            NA    0.005368564           NA             0
## 33             NA   0.006907901             NA            0            NA

Package medfate provides a simple plot function for objects of class fordyn. For example, we can show the interannual variation in stand-level basal area using:

plot(fd, type = "StandBasalArea")

Stand basal area over time

Tree/shrub tables

Another useful output of fordyn() are tables in long format with cohort structural information (i.e. DBH, height, density, etc) for each time step:

fd$TreeTable
##    Step Year Cohort          Species      DBH   Height        N Z50  Z95 ObsID
## 1     0   NA T1_148 Pinus halepensis 37.55000 800.0000 168.0000 100  600  <NA>
## 2     0   NA T2_168     Quercus ilex 14.60000 660.0000 384.0000 300 1000  <NA>
## 3     1 2001 T1_148 Pinus halepensis 37.66427 806.1349 167.6992 100  600  <NA>
## 4     1 2001 T2_168     Quercus ilex 14.71147 663.4696 383.6671 300 1000  <NA>
## 5     2 2002 T1_148 Pinus halepensis 37.77951 812.2899 167.3956 100  600  <NA>
## 6     2 2002 T2_168     Quercus ilex 14.82288 666.9271 383.3314 300 1000  <NA>
## 7     3 2003 T1_148 Pinus halepensis 37.89512 818.4330 167.0892 100  600  <NA>
## 8     3 2003 T2_168     Quercus ilex 14.93423 670.3732 382.9929 300 1000  <NA>
## 9     4 2004 T1_148 Pinus halepensis 38.01077 824.5461 166.7790 100  600  <NA>
## 10    4 2004 T2_168     Quercus ilex 15.04550 673.8066 382.6505 300 1000  <NA>
## 11    5 2005 T1_148 Pinus halepensis 38.12627 830.6197 166.4668 100  600  <NA>
## 12    5 2005 T2_168     Quercus ilex 15.15638 677.2185 382.3063 300 1000  <NA>
## 13    6 2006 T1_148 Pinus halepensis 38.24151 836.6486 166.1517 100  600  <NA>
## 14    6 2006 T2_168     Quercus ilex 15.26663 680.6006 381.9591 300 1000  <NA>
## 15    7 2007 T1_148 Pinus halepensis 38.35647 842.6313 165.8338 100  600  <NA>
## 16    7 2007 T2_168     Quercus ilex 15.37646 683.9602 381.6091 300 1000  <NA>
## 17    8 2008 T1_148 Pinus halepensis 38.47111 848.5662 165.5121 100  600  <NA>
## 18    8 2008 T2_168     Quercus ilex 15.48592 687.2977 381.2552 300 1000  <NA>
## 19    9 2009 T1_148 Pinus halepensis 38.58539 854.4526 165.1884 100  600  <NA>
## 20    9 2009 T2_168     Quercus ilex 15.59501 690.6143 380.8995 300 1000  <NA>
## 21   10 2010 T1_148 Pinus halepensis 38.69934 860.2914 164.8637 100  600  <NA>
## 22   10 2010 T2_168     Quercus ilex 15.70382 693.9120 380.5428 300 1000  <NA>

The same can be shown for dead trees:

fd$DeadTreeTable
##    Step Year Cohort          Species      DBH   Height         N N_starvation
## 1     1 2001 T1_148 Pinus halepensis 37.66427 806.1349 0.3007620            0
## 2     1 2001 T2_168     Quercus ilex 14.71147 663.4696 0.3328701            0
## 3     2 2002 T1_148 Pinus halepensis 37.77951 812.2899 0.3035960            0
## 4     2 2002 T2_168     Quercus ilex 14.82288 666.9271 0.3356940            0
## 5     3 2003 T1_148 Pinus halepensis 37.89512 818.4330 0.3064535            0
## 6     3 2003 T2_168     Quercus ilex 14.93423 670.3732 0.3385419            0
## 7     4 2004 T1_148 Pinus halepensis 38.01077 824.5461 0.3101772            0
## 8     4 2004 T2_168     Quercus ilex 15.04550 673.8066 0.3423454            0
## 9     5 2005 T1_148 Pinus halepensis 38.12627 830.6197 0.3122093            0
## 10    5 2005 T2_168     Quercus ilex 15.15638 677.2185 0.3442841            0
## 11    6 2006 T1_148 Pinus halepensis 38.24151 836.6486 0.3150822            0
## 12    6 2006 T2_168     Quercus ilex 15.26663 680.6006 0.3471545            0
## 13    7 2007 T1_148 Pinus halepensis 38.35647 842.6313 0.3179497            0
## 14    7 2007 T2_168     Quercus ilex 15.37646 683.9602 0.3500230            0
## 15    8 2008 T1_148 Pinus halepensis 38.47111 848.5662 0.3216960            0
## 16    8 2008 T2_168     Quercus ilex 15.48592 687.2977 0.3538617            0
## 17    9 2009 T1_148 Pinus halepensis 38.58539 854.4526 0.3236771            0
## 18    9 2009 T2_168     Quercus ilex 15.59501 690.6143 0.3557634            0
## 19   10 2010 T1_148 Pinus halepensis 38.69934 860.2914 0.3247297            0
## 20   10 2010 T2_168     Quercus ilex 15.70382 693.9120 0.3566526            0
##    N_dessication N_burnt Z50  Z95 ObsID
## 1              0       0 100  600  <NA>
## 2              0       0 300 1000  <NA>
## 3              0       0 100  600  <NA>
## 4              0       0 300 1000  <NA>
## 5              0       0 100  600  <NA>
## 6              0       0 300 1000  <NA>
## 7              0       0 100  600  <NA>
## 8              0       0 300 1000  <NA>
## 9              0       0 100  600  <NA>
## 10             0       0 300 1000  <NA>
## 11             0       0 100  600  <NA>
## 12             0       0 300 1000  <NA>
## 13             0       0 100  600  <NA>
## 14             0       0 300 1000  <NA>
## 15             0       0 100  600  <NA>
## 16             0       0 300 1000  <NA>
## 17             0       0 100  600  <NA>
## 18             0       0 300 1000  <NA>
## 19             0       0 100  600  <NA>
## 20             0       0 300 1000  <NA>

Accessing the output from function growth()

Since function fordyn() makes internal calls to function growth(), it stores the result in a vector called GrowthResults, which we can use to inspect intra-annual patterns of desired variables. For example, the following shows the leaf area for individuals of the three cohorts during the second year:

plot(fd$GrowthResults[[2]], "LeafArea", bySpecies = T)

Leaf area variation over one year Instead of examining year by year, it is possible to plot the whole series of results by passing a fordyn object to the plot() function:

plot(fd, "LeafArea")

Leaf area variation for multiple years

Finally, we can create interactive plots for particular steps using function shinyplot(), e.g.:

shinyplot(fd$GrowthResults[[1]])

Forest dynamics including management

The package allows including forest management in simulations of forest dynamics. This is done in a very flexible manner, in the sense that fordyn() allows the user to supply an arbitrary function implementing a desired management strategy for the stand whose dynamics are to be simulated. The package includes, however, an in-built default function called defaultManagementFunction() along with a flexible parameterization, a list with defaults provided by function defaultManagementArguments().

Here we provide an example of simulations including forest management:

# Default arguments
args <- defaultManagementArguments()
# Here one can modify defaults before calling fordyn()
#
# Simulation
fd<-fordyn(exampleforest, examplesoil, SpParamsMED, meteo, control, 
           latitude = 41.82592, elevation = 100,
           management_function = defaultManagementFunction,
           management_args = args)
## Simulating year 2001 (1/10):  (a) Growth/mortality & management [thinning], (b) Regeneration nT = 2 nS = 2
## Simulating year 2002 (2/10):  (a) Growth/mortality & management [none], (b) Regeneration nT = 2 nS = 2
## Simulating year 2003 (3/10):  (a) Growth/mortality & management [none], (b) Regeneration nT = 2 nS = 2
## Simulating year 2004 (4/10):  (a) Growth/mortality & management [none], (b) Regeneration nT = 2 nS = 2
## Simulating year 2005 (5/10):  (a) Growth/mortality & management [none], (b) Regeneration nT = 2 nS = 2
## Simulating year 2006 (6/10):  (a) Growth/mortality & management [none], (b) Regeneration nT = 2 nS = 2
## Simulating year 2007 (7/10):  (a) Growth/mortality & management [none], (b) Regeneration nT = 2 nS = 2
## Simulating year 2008 (8/10):  (a) Growth/mortality & management [none], (b) Regeneration nT = 2 nS = 2
## Simulating year 2009 (9/10):  (a) Growth/mortality & management [none], (b) Regeneration nT = 2 nS = 2
## Simulating year 2010 (10/10):  (a) Growth/mortality & management [none], (b) Regeneration nT = 2 nS = 2

When management is included in simulations, two additional tables are produced, corresponding to the trees and shrubs that were cut, e.g.:

fd$CutTreeTable
##   Step Year Cohort          Species      DBH   Height          N Z50  Z95 ObsID
## 1    1 2001 T1_148 Pinus halepensis 37.66427 806.1349   9.336019 100  600  <NA>
## 2    1 2001 T2_168     Quercus ilex 14.71147 663.4696 383.667130 300 1000  <NA>

Management parameters were those of an irregular model with thinning interventions from ‘below’, indicating that smaller trees were to be cut earlier:

args$type
## [1] "irregular"
args$thinning
## [1] "below"

Note that in this example, there is resprouting of Quercus ilex after the thinning intervention, evidenced by the new cohort (T3_168) appearing in year 2001:

fd$TreeTable
##    Step Year Cohort          Species       DBH    Height         N      Z50
## 1     0   NA T1_148 Pinus halepensis 37.550000 800.00000  168.0000 100.0000
## 2     0   NA T2_168     Quercus ilex 14.600000 660.00000  384.0000 300.0000
## 3     1 2001 T1_148 Pinus halepensis 37.664271 806.13493  158.3632 100.0000
## 4     1 2001 T3_168     Quercus ilex  1.000000  47.23629 3000.0000 300.0000
## 5     2 2002 T1_148 Pinus halepensis 37.781094 812.32091  158.1918 100.0000
## 6     2 2002 T3_168     Quercus ilex  1.138025  55.69984 2614.7333 300.0000
## 7     3 2003 T1_148 Pinus halepensis 37.900792 818.62002  158.0190 100.0000
## 8     3 2003 T3_168     Quercus ilex  1.253656  62.74543 2359.1212 300.0000
## 9     4 2004 T1_148 Pinus halepensis 38.020670 824.89498  157.8443 100.0000
## 10    4 2004 T3_168     Quercus ilex  1.369321  69.79064 2147.8583 300.0000
## 11    5 2005 T1_148 Pinus halepensis 38.140537 831.13600  157.6687 100.0000
## 12    5 2005 T2_168     Quercus ilex  1.412760  74.29166 2389.7162 282.3466
## 13    6 2006 T1_148 Pinus halepensis 38.257950 837.21672  157.4920 100.0000
## 14    6 2006 T2_168     Quercus ilex  1.529022  81.37533 1910.1852 282.3466
## 15    7 2007 T1_148 Pinus halepensis 38.376098 843.30336  157.3139 100.0000
## 16    7 2007 T2_168     Quercus ilex  1.645689  88.48298 1766.5566 282.3466
## 17    8 2008 T1_148 Pinus halepensis 38.494595 849.37566  157.1340 100.0000
## 18    8 2008 T2_168     Quercus ilex  1.763580  95.67111 1641.2866 282.3466
## 19    9 2009 T1_148 Pinus halepensis 38.613214 855.42201  156.9531 100.0000
## 20    9 2009 T2_168     Quercus ilex  1.882208 102.90984 1531.5418 282.3466
## 21   10 2010 T1_148 Pinus halepensis 38.731818 861.43553  156.7719 100.0000
## 22   10 2010 T2_168     Quercus ilex  2.001386 110.18771 1434.7802 282.3466
##     Z95 ObsID
## 1   600  <NA>
## 2  1000  <NA>
## 3   600  <NA>
## 4  1000  <NA>
## 5   600  <NA>
## 6  1000  <NA>
## 7   600  <NA>
## 8  1000  <NA>
## 9   600  <NA>
## 10 1000  <NA>
## 11  600  <NA>
## 12 1000  <NA>
## 13  600  <NA>
## 14 1000  <NA>
## 15  600  <NA>
## 16 1000  <NA>
## 17  600  <NA>
## 18 1000  <NA>
## 19  600  <NA>
## 20 1000  <NA>
## 21  600  <NA>
## 22 1000  <NA>

References

  • De Cáceres M, Molowny-Horas R, Cabon A, Martínez-Vilalta J, Mencuccini M, García-Valdés R, Nadal-Sala D, Sabaté S, Martin-StPaul N, Morin X, D’Adamo F, Batllori E, Améztegui A (2023) MEDFATE 2.9.3: A trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales. Geoscientific Model Development 16: 3165-3201 (https://doi.org/10.5194/gmd-16-3165-2023).