Functions used to scale from tissue conductivity to conductance of different elements of the continuum.
Usage
hydraulics_maximumSoilPlantConductance(krhizomax, krootmax, kstemmax, kleafmax)
hydraulics_soilPlantResistancesSigmoid(
psiSoil,
psiRhizo,
psiStem,
PLCstem,
psiLeaf,
PLCleaf,
krhizomax,
n,
alpha,
krootmax,
root_P50,
root_slope,
kstemmax,
stem_P50,
stem_slope,
kleafmax,
leaf_P50,
leaf_slope
)
hydraulics_soilPlantResistancesWeibull(
psiSoil,
psiRhizo,
psiStem,
PLCstem,
psiLeaf,
PLCleaf,
krhizomax,
n,
alpha,
krootmax,
rootc,
rootd,
kstemmax,
stemc,
stemd,
kleafmax,
leafc,
leafd
)
hydraulics_averageRhizosphereResistancePercent(
krhizomax,
n,
alpha,
krootmax,
rootc,
rootd,
kstemmax,
stemc,
stemd,
kleafmax,
leafc,
leafd,
psiStep = -0.01
)
hydraulics_findRhizosphereMaximumConductance(
averageResistancePercent,
n,
alpha,
krootmax,
rootc,
rootd,
kstemmax,
stemc,
stemd,
kleafmax,
leafc,
leafd,
initialValue = 0
)
hydraulics_taperFactorSavage(height)
hydraulics_terminalConduitRadius(height)
hydraulics_referenceConductivityHeightFactor(refheight, height)
hydraulics_maximumStemHydraulicConductance(
xylemConductivity,
refheight,
Al2As,
height,
taper = FALSE
)
hydraulics_rootxylemConductanceProportions(L, V)
Arguments
- krhizomax
Maximum rhizosphere hydraulic conductance (defined as flow per leaf surface unit and per pressure drop).
- krootmax
Maximum root xylem hydraulic conductance (defined as flow per leaf surface unit and per pressure drop).
- kstemmax
Maximum stem xylem hydraulic conductance (defined as flow per leaf surface unit and per pressure drop).
- kleafmax
Maximum leaf hydraulic conductance (defined as flow per leaf surface unit and per pressure drop).
- psiSoil
Soil water potential (in MPa). A scalar or a vector depending on the function.
- psiRhizo
Water potential (in MPa) in the rhizosphere (root surface).
- psiStem
Water potential (in MPa) in the stem.
- PLCstem
Percent loss of conductance (in %) in the stem.
- psiLeaf
Water potential (in MPa) in the leaf.
- n, alpha
Parameters of the Van Genuchten function (rhizosphere vulnerability curve).
- root_P50, root_slope
Parameters of the Sigmoid function for roots (root xylem vulnerability curve).
- stem_P50, stem_slope
Parameters of the Sigmoid function for stems (stem xylem vulnerability curve).
- leaf_P50, leaf_slope
Parameters of the Sigmoid function for leaves (leaf vulnerability curve).
- rootc, rootd
Parameters of the Weibull function for roots (root xylem vulnerability curve).
- stemc, stemd
Parameters of the Weibull function for stems (stem xylem vulnerability curve).
- leafc, leafd
Parameters of the Weibull function for leaves (leaf vulnerability curve).
- psiStep
Water potential precision (in MPa).
- averageResistancePercent
Average (across water potential values) resistance percent of the rhizosphere, with respect to total resistance (rhizosphere + root xylem + stem xylem).
- initialValue
Initial value of rhizosphere conductance.
- height
Plant height (in cm).
- refheight
Reference plant height of measurement of xylem conductivity (in cm).
- xylemConductivity
Xylem conductivity as flow per length of conduit and pressure drop (in kg·m-1·s-1·MPa-1).
- Al2As
Leaf area to sapwood area (in m2·m-2).
- taper
A boolean flag to indicate correction by taper of xylem conduits (Christoffersen et al. 2017).
- L
Vector with the length of coarse roots (mm) for each soil layer.
- V
Vector with the proportion [0-1] of fine roots within each soil layer.
Value
Values returned for each function are:
hydraulics_maximumSoilPlantConductance
: The maximum soil-plant conductance, in the same units as the input segment conductances.hydraulics_averageRhizosphereResistancePercent
: The average percentage of resistance due to the rhizosphere, calculated across water potential values.hydraulics_findRhizosphereMaximumConductance
: The maximum rhizosphere conductance value given an average rhizosphere resistance and the vulnerability curves of rhizosphere, root and stem elements.hydraulics_taperFactorSavage
: Taper factor according to Savage et al. (2010).
References
Christoffersen, B. O., M. Gloor, S. Fauset, N. M. Fyllas, D. R. Galbraith, T. R. Baker, L. Rowland, R. A. Fisher, O. J. Binks, S. A. Sevanto, C. Xu, S. Jansen, B. Choat, M. Mencuccini, N. G. McDowell, and P. Meir. 2016. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geoscientific Model Development Discussions 9: 4227–4255.
Savage, V. M., L. P. Bentley, B. J. Enquist, J. S. Sperry, D. D. Smith, P. B. Reich, and E. I. von Allmen. 2010. Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proceedings of the National Academy of Sciences of the United States of America 107:22722–7.
Olson, M.E., Anfodillo, T., Rosell, J.A., Petit, G., Crivellaro, A., Isnard, S., León-Gómez, C., Alvarado-Cárdenas, L.O., and Castorena, M. 2014. Universal hydraulics of the flowering plants: Vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Letters 17: 988–997.