Estimates potential fire behaviour at each daily step of a simulation
Usage
fireHazard(
x,
SpParams,
forest = NULL,
standardConditions = FALSE,
freq = "days",
fun = "max"
)
Arguments
- x
An object of class
spwb
,spwb_day
,pwb
,growth
,growth_day
orfordyn
.- SpParams
A data frame with species parameters (see
SpParamsDefinition
andSpParamsMED
).- forest
An object of class
forest
(needed ifx
is not of classfordyn
).- standardConditions
A logical flag to indicate that standard fire weather conditions are to be used (instead of deriving fuel moisture and windspeed from
x
).- freq
Frequency of summary statistics (see
cut.Date
).- fun
Summary function (by default, maximum values).
Value
A matrix with fire behaviour variables (columns) for each simulated day (rows) or coarser time steps if summaries are requested.
Details
Live fuel moisture of shrub and canopy layers is estimated from plant water status. Dead fuel moisture is estimated following Resco-de-Dios et al. (2015).
References
Resco de Dios, V., A. W. Fellows, R. H. Nolan, M. M. Boer, R. A. Bradstock, F. Domingo, and M. L. Goulden. 2015. A semi-mechanistic model for predicting the moisture content of fine litter. Agricultural and Forest Meteorology 203:64–73.
Ruffault J, Limousin JM, Pimont F, Dupuy JL, De Cáceres M, Cochard H, Mouillot F, Blackman C, Torres-Ruiz JM, Parsons R, Moreno M, Delzon S, Jansen S, Olioso A, Choat B, Martin-StPaul N. 2023. Plant hydraulic modelling of leaf and canopy fuel moisture content reveals increasing vulnerability of a Mediterranean forest to wildfires under extreme drought. New Phytologist. (10.1111/nph.18614).
Examples
# \donttest{
#Load example daily meteorological data
data(examplemeteo)
#Load example plot plant data
data(exampleforest)
#Default species parameterization
data(SpParamsMED)
#Define soil with default soil params (4 layers)
examplesoil <- defaultSoilParams(4)
#Initialize control parameters
control <- defaultControl("Granier")
#Initialize input
x1 <- spwbInput(exampleforest,examplesoil, SpParamsMED, control)
#Call simulation function
S1 <- spwb(x1, examplemeteo, latitude = 41.82592, elevation = 100)
#> Initial plant water content (mm): 4.73001
#> Initial soil water content (mm): 290.875
#> Initial snowpack content (mm): 0
#> Performing daily simulations
#>
#> [Year 2001]:............
#>
#> Final plant water content (mm): 4.7285
#> Final soil water content (mm): 274.723
#> Final snowpack content (mm): 0
#> Change in plant water content (mm): -0.00151775
#> Plant water balance result (mm): -0.00151775
#> Change in soil water content (mm): -16.1521
#> Soil water balance result (mm): -16.1521
#> Change in snowpack water content (mm): 0
#> Snowpack water balance result (mm): -7.10543e-15
#> Water balance components:
#> Precipitation (mm) 513 Rain (mm) 462 Snow (mm) 51
#> Interception (mm) 92 Net rainfall (mm) 370
#> Infiltration (mm) 400 Infiltration excess (mm) 21 Saturation excess (mm) 0 Capillarity rise (mm) 0
#> Soil evaporation (mm) 26 Herbaceous transpiration (mm) 14 Woody plant transpiration (mm) 249
#> Plant extraction from soil (mm) 249 Plant water balance (mm) -0 Hydraulic redistribution (mm) 5
#> Runoff (mm) 21 Deep drainage (mm) 128
#Evaluate fire hazard
F1 <- fireHazard(S1, SpParamsMED, exampleforest)
# }