Bibliography

Adams, H.D., Park Williams, A., Xu, C., Rauscher, S.A., Jiang, X. & McDowell, N.G. (2013). Empirical and process-based approaches to climate-induced forest mortality models. Frontiers in Plant Science, 4, 1–5.
Adams, H.D., Zeppel, M.J.B., Anderegg, W.R.L., Hartmann, H., Landhäusser, S.M., Tissue, D.T., et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 1, 1285–1291.
Albini, F.A. (1976). Estimating wildfire behavior and effects. For. Serv. Gen. Tech. Rep. INT-30, 4235, 44 ST–Guidelines and sample protocol for sampli.
Albini, F. & Baughman, R. (1979). Estimating windspeeds for predicting wildland fire behavior. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper, INT-RP-221.
Ameztegui, A., Cabon, A., De Caceres, M. & Coll, L. (2017). Managing stand density to enhance the adaptability of Scots pine stands to climate change: A modelling approach. Ecological Modelling, 356, 141–150.
Anderegg, W.R.L., Wolf, A., Arango-Velez, A., Choat, B., Chmura, D.J., Jansen, S., et al. (2018). Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecology Letters, 21, 968–977.
Anten, N.P.R. & Bastiaans, L. (2016). The use of canopy models to analyze light competition among plants. In: Canopy photosynthesis: From basics to application (eds. Hikosaka, K., Niinemets, Ü. & Anten, N.P.R.). Springer, pp. 379–398.
Baldocchi, D. (1994). An analytical solution for coupled leaf photosynthesis and stomatal conductance models. Tree Physiology, 14, 1069–1079.
Bär, A., Michaletz, S.T. & Mayr, S. (2019). Fire effects on tree physiology. New Phytologist, 223, 1728–1741.
Bartlett, M.K., Klein, T., Jansen, S., Choat, B. & Sack, L. (2016). The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proceedings of the National Academy of Sciences of the United States of America, 113, 13098–13103.
Bartlett, M.K., Scoffoni, C. & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis. Ecology letters, 15, 393–405.
Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis, A.R. & Long, S.P. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell and Environment, 24, 253–259.
Best, M.J., Pryor, M., Clark, D.B., Rooney, G.G., Essery, R.L.H., Ménard, C.B., et al. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geoscientific Model Development, 4, 677–699.
Birk, E.M. & Simpson, R.W. (1980). Steady state and the continuous input model of litter accumulation and decompostion in Australian eucalypt forests. Ecology, 61, 481–485.
Blackman, C.J., Pfautsch, S., Choat, B., Delzon, S., Gleason, S.M. & Duursma, R.A. (2016). Toward an index of desiccation time to tree mortality under drought. Plant Cell and Environment, 39, 2342–2345.
Bonan, G. (2019). Climate change and terrestrial ecosystem modeling. Cambridge University Press, Cambridge, UK.
Bonan, G.B., Williams, M., Fisher, R.A. & Oleson, K.W. (2014). Modeling stomatal conductance in the earth system: Linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum. Geoscientific Model Development, 7, 2193–2222.
Boughton, W. (1989). A review of the USDA SCS curve number method. Australian Journal of Soil Research, 27, 511–523.
Bugmann, H., Seidl, R., Hartig, F., Bohn, F., Brůna, J., Cailleret, M., et al. (2019). Tree mortality submodels drive simulated long-term forest dynamics: Assessing 15 models from the stand to global scale. Ecosphere, 10, e02616.
Bullock, J.M., Mallada González, L., Tamme, R., Götzenberger, L., White, S.M., Pärtel, M., et al. (2017). A synthesis of empirical plant dispersal kernels. Journal of Ecology, 105, 6–19.
Butler, B.W. & Dickinson, M.B. (2010). Tree Injury and Mortality in Fires: Developing Process-Based Models. Fire Ecology, 6, 55–79.
Byram, G.M. (1959). Combustion of forest fuels. In: Forest fire: Control and use (ed. Davis, K.P.). McGraw-Hill, New York, pp. 61–89.
Cabon, A., Fernández‐de‐Uña, L., Gea‐Izquierdo, G., Meinzer, F.C., Woodruff, D.R., Martínez‐Vilalta, J., et al. (2020a). Water potential control of turgor‐driven tracheid enlargement in Scots pine at its xeric distribution edge. New Phytologist, 225, 209–221.
Cabon, A., Peters, R.L., Fonti, P., Martínez‐Vilalta, J. & De Cáceres, M. (2020b). Temperature and water potential co‐limit stem cambial activity along a steep elevational gradient. New Phytologist, 226, 1325–1340.
Campbell, G.S. & Norman, J.M. (1998). An introduction to environmental biophysics. Springer-Verlag, New York.
Cannell, M.G.R. & Thornley, J.H.M. (2000). Modelling the Components of Plant Respiration: Some Guiding Principles. Annals of Botany, 85, 45–54.
Carsel, R.F. & Parrish, R.S. (1988). Developing joint probability distributions of soil water retention characteristics. Water Resources Research, 24, 755–769.
Cho, N., Kang, S., Agossou, C., Kim, E. & Lim, J.-H. (2022). Modeling temporal variations of non-structural carbohydrate (NSC) storages across biomes. Forest Ecology and Management, 508, 120033.
Choat, B., Jansen, S., Brodribb, T.J., Cochard, H., Delzon, S., Bhaskar, R., et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752–755.
Christoffersen, B.O., Gloor, M., Fauset, S., Fyllas, N.M., Galbraith, D.R., Baker, T.R., et al. (2016). Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geoscientific Model Development Discussions, 9, 4227–4255.
Chuine, I., Garcia de Cortazar-Atauri, I., Kramer, K. & Hänninen, H. (2013). Plant Development Models. In: Phenology: An Integrative Environmental Science (ed. Schwartz, M.D.). Springer Science, Dordrecht, pp. 275–293.
Clark, J.S., Macklin, E. & Wood, L. (1998). Stages and spatial scales of recruitment limitation in Southern Appalachian forests. Ecological Monographs, 68, 213–235.
Cochard, H., Pimont, F., Ruffault, J. & Martin-StPaul, N. (2021). SurEau: A mechanistic model of plant water relations under extreme drought. Annals of Forest Science, 78.
Collatz, G.J., Ball, J.T., Grivet, C. & Berry, J.A. (1991). Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54, 107–136.
Collins, D.B.G. & Bras, R.L. (2007). Plant rooting strategies in water-limited ecosystems. Water Resources Research, 43, W06407.
Cox, P.M., Betts, R.A., Bunton, C.B., Essery, R.L.H., Rowntree, P.R. & Smith, J. (1999). The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dynamics, 15, 183–203.
De Cáceres, M., Casals, P., Gabriel, E. & Castro, X. (2019). Scaling-up individual-level allometric equations to predict stand-level fuel loading in Mediterranean shrublands. Annals of Forest Science, 76, 87.
De Cáceres, M., Martínez-Vilalta, J., Coll, L., Llorens, P., Casals, P., Poyatos, R., et al. (2015). Coupling a water balance model with forest inventory data to predict drought stress: The role of forest structural changes vs. Climate changes. Agricultural and Forest Meteorology, 213, 77–90.
De Cáceres, M., Martin-StPaul, N., Turco, M., Cabon, A. & Granda, V. (2018). Estimating daily meteorological data and downscaling climate models over landscapes. Environmental Modelling & Software, 108, 186–196.
De Cáceres, M., Mencuccini, M., Martin-StPaul, N., Limousin, J.-M., Coll, L., Poyatos, R., et al. (2021). Unravelling the effect of species mixing on water use and drought stress in Mediterranean forests: A modelling approach. Agricultural and Forest Meteorology, 296, 108233.
De Cáceres, M., Molowny-Horas, R., Cabon, A., Martínez-Vilalta, J., Mencuccini, M., García-Valdés, R., et al. (2023). MEDFATE 2.9.3: A trait-enabled model to simulate Mediterranean forest function and dynamics at regional scales. Geoscientific Model Development, 16, 3165–3201.
De Pury, D.G.G. & Farquhar, G.D. (1997). Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant, Cell and Environment, 20, 537–557.
Deguchi, A., Hattori, S. & Park, H.-T. (2006). The influence of seasonal changes in canopy structure on interception loss: Application of the revised Gash model. Journal of Hydrology, 318, 80–102.
Delpierre, N., Dufrêne, E., Soudani, K., Ulrich, E., Cecchini, S., Boé, J., et al. (2009). Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology, 149, 938–948.
Dharssi, I., Vidale, P.L., Verhoef, A., MacPherson, B., Jones, C. & Best, M. (2009). New soil physical properties implemented in the Unified Model at PS18, 9–12.
Dietze, M.C., Sala, A., Carbone, M.S., Czimczik, C.I., Mantooth, J.A., Richardson, A.D., et al. (2014). Nonstructural Carbon in Woody Plants. Annual Review of Plant Biology, 65, 667–687.
Dunlap, F. (1914). Density of wood substance and porosity of wood. Journal of Agricultural Research, II, 423–428.
Duursma, R.A., Blackman, C.J., Lopéz, R., Martin-StPaul, N.K., Cochard, H. & Medlyn, B.E. (2018). On the minimum leaf conductance: Its role in models of plant water use, and ecological and environmental controls. New Phytologist, 221, 693–705.
Espelta, J.M., Barbati, A., Quevedo, L., Tárrega, R., Navascués, P., Bonfil, C., et al. (2012). Post-Fire Management of Mediterranean Broadleaved Forests. In: Post-Fire Management and Restoration of Southern European Forests, Managing Forest Ecosystems (eds. Moreira, F., Arianoutsou, M., Corona, P. & De las Heras, J.). Springer Netherlands, Dordrecht, pp. 171–194.
Espelta, J.M., Habrouk, A. & Retana, J. (2006). Response to natural and simulated browsing of two Mediterranean oaks with contrasting leaf habit after a wildfire. Annals of Forest Science, 63, 441–447.
Espelta, J.M., Sabaté, S. & Retana, J. (1999). Resprouting Dynamics. In: Ecology of Mediterranean Evergreen Oak Forests, Ecological Studies (eds. Rodà, F., Retana, J., Gracia, C.A. & Bellot, J.). Springer, Berlin, Heidelberg, pp. 61–73.
Fatichi, S., Leuzinger, S. & Körner, C. (2014). Moving beyond photosynthesis: From carbon source to sink-driven vegetation modeling. New Phytologist, 201, 1086–1095.
Federer, C. (1982). Transpirational supply and demand: Plant, soil, and atmospheric effects evaluated by simulation. Water Resources Research, 18, 355–362.
Fisher, R.A., Williams, M., Do Vale, L.R., Da Costa, A.L. & Meir, P. (2006). Evidence from Amazonian forests is consistent with a model of isohydric control of leaf water potential. Plant, Cell and Environment, 29, 151–165.
Flerchinger, G.N., Xiao, W., Sauer, T.J. & Yu, Q. (2009). Simulation of within-canopy radiation exchange. NJAS - Wageningen Journal of Life Sciences, 57, 5–15.
Först, P., Werner, F. & Delgado, A. (2002). On the pressure dependence of the viscosity of aqueous sugar solutions. Rheologica Acta, 41, 369–374.
Francés, F., Vélez, J.I. & Vélez, J.J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332, 226–240.
Franks, P.J. (2006). Higher rates of leaf gas exchange are associated with higher leaf hydrodynamic pressure gradients. Plant, Cell and Environment, 29, 584–592.
Friend, A.D., Stevens, A.K., Knox, R.G. & Cannell, M.G.R. (1997). A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological Modelling, 95, 249–287.
Fyllas, N.M. & Troumbis, A.Y. (2009). Simulating vegetation shifts in north-eastern Mediterranean mountain forests under climatic change scenarios. Global Ecology and Biogeography, 18, 64–77.
García‐Jiménez, R., Palmero‐Iniesta, M. & Espelta, J. (2017). Contrasting Effects of Fire Severity on the Regeneration of Pinus halepensis Mill. And Resprouter Species in Recently Thinned Thickets. Forests, 8, 55.
Gash, J., Lloyd, C. & Lachaud, G. (1995). Estimating sparse forest rainfall interception with an analytical model. Journal of Hydrology, 170.
Genuchten, M.V. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44, 892–898.
Gifford, R.M. (2003). Plant respiration in productivity models: Conceptualisation, representation and issues for global terrestrial carbon-cycle research. Functional Plant Biology, 30, 171–186.
Granier, A., Bréda, N., Biron, P. & Villette, S. (1999). A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecological Modelling, 116, 269–283.
Granier, A., Reichstein, M., Bréda, N., Janssens, I.A., Falge, E., Ciais, P., et al. (2007). Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143, 123–145.
Green, H.W. & Ampt, G.A. (1911). Studies on Soil Physics. The Journal of Agricultural Science, 4, 1–24.
Guillemot, J., Martin-Stpaul, N.K., Dufrêne, E., François, C., Soudani, K., Ourcival, J.M., et al. (2015). The dynamic of the annual carbon allocation to wood in European tree species is consistent with a combined source-sink limitation of growth: Implications for modelling. Biogeosciences, 12, 2773–2790.
Hammond, W.M., Yu, Kailiang.L., Wilson, L.A., Will, R.E., Anderegg, W.R.L. & Adams, H.D. (2019). Dead or dying? Quantifying the point of no return from hydraulic failure in drought‐induced tree mortality. New Phytologist.
Hasenauer, H. & Monserud, R.A. (1996). A crown ratio model for Austrian Forests. Forest Ecology and Management, 84, 49–60.
Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P.J. & Vachaud, G. (1977). A Comparison of Numerical Simulation Models For OneDimensional Infiltration. Soil Science Society of America Journal, 41, 285–294.
Hawkes, C. (2000). Woody plant mortality algorithms: Description, problems and progress. Ecological Modelling, 126, 225–248.
Hikosaka, K., Kumagai, T. & Ito, A. (2016). Modeling Canopy Photosynthesis. pp. 239–268.
Hölttä, T., Cochard, H., Nikinmaa, E. & Mencuccini, M. (2009). Capacitive effect of cavitation in xylem conduits: Results from a dynamic model. Plant, Cell and Environment, 32, 10–21.
Hölttä, T., Lintunen, A., Chan, T., Mäkelä, A. & Nikinmaa, E. (2017). A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux. Tree physiology, 37, 851–868.
Hood, S.M., Varner, J.M., Van Mantgem, P. & Cansler, C.A. (2018). Fire and tree death: Understanding and improving modeling of fire-induced tree mortality. Environmental Research Letters, 13.
Hoshika, Y., Osada, Y., Marco, A. de, Peñuelas, J. & Paoletti, E. (2018). Global diurnal and nocturnal parameters of stomatal conductance in woody plants and major crops. Global Ecology and Biogeography, 27, 257–275.
Jarvis, N.J., Jansson, P‐E., Dik, P.E. & Messing, I. (1991). Modelling water and solute transport in macroporous soil. I. Model description and sensitivity analysis. Journal of Soil Science, 42, 59–70.
Jarvis, P.G. (1976). The Interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society B: Biological Sciences, 273, 593–610.
Karavani, A., De Cáceres, M., Martínez de Aragón, J., Bonet, J.A. & de-Miguel, S. (2018). Effect of climatic and soil moisture conditions on mushroom productivity and related ecosystem services in Mediterranean pine stands facing climate change. Agricultural and Forest Meteorology, 248, 432–440.
Katul, G.G., Mahrt, L., Poggi, D. & Sanz, C. (2004). One- and two-equation models for canopy turbulence. Boundary-Layer Meteorology, 113, 81–109.
Keane, R., Austin, M., Field, C. & Huth, A. (2001). Tree mortality in gap models: Application to climate change. Climatic Change, 51, 509–540.
Kergoat, L. (1998). A model for hydrological equilibrium of leaf area index on a global scale. Journal of Hydrology, 212-213, 268–286.
Körner, C. (2015). Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25, 107–114.
Körner, C. (2019). No need for pipes when the well is dry-a comment on hydraulic failure in trees. Tree physiology, 39, 695–700.
Krajicek, J., Brinkman, K. & Gingrich, S. (1961). Crown competition-a measure of density. Forest Science, 7, 35–42.
Kursar, T.A., Engelbrecht, B.M.J., Burke, A., Tyree, M.T., El Omari, B. & Giraldo, J.P. (2009). Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Functional Ecology, 23, 93–102.
Lai, C., Katul, G., Oren, R., Ellsworth, D. & Schäfer, K. (2000). Modeling CO2 and water vapor turbulent flux distributions within a forest canopy. Journal of Geophysical Research: Atmospheres, 105, 26333–26351.
Landsberg, J.J. & Waring, R.H. (1997). A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95, 209–228.
Larsbo, M., Roulier, S., Stenemo, F., Kasteel, R. & Jarvis, N. (2005). An Improved DualPermeability Model of Water Flow and Solute Transport in the Vadose Zone. Vadose Zone Journal, 4, 398–406.
Leij, F.J., Alves, W.J., Genuchten, M.Th.V. & Williams, J.R. (1996). The UNSODA Unsaturated Soil Hydraulic Database User’s Manual Version 1.0.
Leuning, R. (2002). Temperature dependence of two parameters in a photosynthesis model. Plant, Cell and Environment, 25, 1205–1210.
Lindner, M., Sievänen, R. & Pretzsch, H. (1997). Improving the simulation of stand structure in a forest gap model. Forest Ecology and Management, 95, 183–195.
Liu, S. (2001). Evaluation of the Liu model for predicting rainfall interception in forests world-wide. Hydrological Processes, 15, 2341–2360.
Lloret, F., Siscart, D. & Dalmases, C. (2004). Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Global Change Biology, 10, 2092–2099.
Ma, Y. & Liu, H. (2019). An Advanced Multiple-Layer Canopy Model in the WRF Model With Large-Eddy Simulations to Simulate Canopy Flows and Scalar Transport Under Different Stability Conditions. Journal of Advances in Modeling Earth Systems, 11, 2330–2351.
Magnani, F., Mencuccini, M. & Grace, J. (2000). Age-related decline in stand productivity: The role of structural acclimation under hydraulic constraints. Plant, Cell and Environment, 23, 251–263.
Maherali, H., Pockman, W. & Jackson, R. (2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85, 2184–2199.
Manoli, G., Huang, C., Bonetti, S., Domec, J., Marani, M. & Katul, G. (2017). Competition for light and water in a coupled soil-plant system. Advances in Water Resources, 108, 216–230.
Martinez‐Vilalta, J., Anderegg, W.R.L., Sapes, G. & Sala, A. (2019). Greater focus on water pools may improve our ability to understand and anticipate drought‐induced mortality in plants. New Phytologist, 223, 22–32.
Martínez-Vilalta, J., Sala, A., Asensio, D., Galiano, L., Hoch, G., Palacio, S., et al. (2016). Dynamics of non-structural carbohydrates in terrestrial plants: A global synthesis. Ecological Monographs, 86, 495–516.
Martin-StPaul, N., Delzon, S. & Cochard, H. (2017). Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 20, 1437–1447.
Massman, W. (1987). A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies. Boundary-Layer Meteorology, 40, 179–197.
McDowell, N.G. (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology, 155, 1051–1059.
McDowell, N.G., Sapes, G., Pivovaroff, A., Adams, H.D., Allen, C.D., Anderegg, W.R.L., et al. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 0123456789, 294–308.
McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., et al. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? The New Phytologist, 178, 719–39.
McMurtrie, R.E., Rook, D.A. & Kelliher, F.M. (1990). Modelling the yield of Pinus radiata on a site limited by water and nitrogen. Forest Ecology and Management, 30, 381–413.
Medlyn, B.E., Loustau, D. & Delzon, S. (2002). Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.). Plant, Cell and Environment, 25, 1155–1165.
Mencuccini, M. & Grace, J. (1995). Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiology, 15, 1–10.
Michaletz, S.T. & Johnson, E.A. (2006). A heat transfer model of crown scorch in forest fires. Canadian Journal of Forest Research, 36, 2839–2851.
Michaletz, S.T. & Johnson, E.A. (2008). A biophysical process model of tree mortality in surface fires. Canadian Journal of Forest Research, 38, 2013–2029.
Miralles, D.G., Gash, J.H., Holmes, T.R.H., Jeu, R.A.M. de & Dolman, A.J. (2010). Global canopy interception from satellite observations. Journal of Geophysical Research, 115, D16122.
Mitsopoulos, I.D. & Dimitrakopoulos, A.P. (2007). Allometric equations for crown fuel biomass of Aleppo pine (Pinus halepensis Mill.) in Greece. International Journal of Wildland Fire, 16, 642–647.
Moreira, B., Tormo, J. & Pausas, J.G. (2012). To resprout or not to resprout: Factors driving intraspecific variability in resprouting. Oikos, 121, 1577–1584.
Mouillot, F., Rambal, S. & Joffre, R. (2002). Simulating climate change impacts on fire frequency and vegetation dynamics in a Mediterranean-type ecosystem. Global Change Biology, 8, 423–437.
Mouillot, F., Rambal, S. & Lavorel, S. (2001). A generic process-based SImulator for meditERRanean landscApes (SIERRA): Design and validation exercises. Forest Ecology and Management, 147, 75–97.
Nathan, R., Klein, E., Robledo-Arnuncio, J.J. & Revilla, E. (2012). Dispersal kernels: review. In: Dispersal Ecology and Evolution (eds. Clobert, J., Baguette, M., Benton, T.G. & Bullock, J.M.). Oxford University Press, pp. 186–210.
Nathan, R., Safriel, U.N. & Noy-Meir, I. (2001). Field validation and sensitivity analysis of a mechanistic model for tree seed dispersal by wind. Ecology, 82, 374–388.
Ogle, K. & Pacala, S.W. (2009). A modeling framework for inferring tree growth and allocation from physiological, morphological and allometric traits. Tree Physiology, 29, 587–605.
Oliveras, I., Martínez-Vilalta, J., Jimenez-Ortiz, T., Lledó, M.J., Escarré, A. & Piñol, J. (2003). Hydraulic architecture of Pinus halepensis, P . Pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain. Plant Ecology, 131–141.
Olson, M.E., Anfodillo, T., Rosell, J.A., Petit, G., Crivellaro, A., Isnard, S., et al. (2014). Universal hydraulics of the flowering plants: Vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Letters, 17, 988–997.
Ostendorf, B. & Reynolds, J.F. (1993). Relationships between a terrain-based hydrologic model and patch-scale vegetation patterns in an arctic tundra landscape. Landscape Ecology, 8, 229–237.
Pausas, J.G., Pratt, R.B., Keeley, J.E., Jacobsen, A.L., Ramirez, A.R., Vilagrosa, A., et al. (2016). Towards understanding resprouting at the global scale. New Phytologist, 209, 945–954.
Pimont, F., Dupuy, J.L. & Rigolot, E. (2018). A simple model for shrub-strata-fuel dynamics in Quercus coccifera L. communities. Annals of Forest Science, 75, 1–9.
Plavcová, L. & Jansen, S. (2015). The Role of Xylem Parenchyma in the Storage and Utilization of Nonstructural Carbohydrates. In: Functional and Ecological Xylem Anatomy. Springer International Publishing, Cham, pp. 209–234.
Prentice, I.C., Sykes, M.T. & Cramer, W. (1993). A simulation model for the transient effects of climate change on forest landscapes. Ecological Modelling, 65, 51–70.
Prescott, C.E., Grayston, S.J., Helmisaari, H.-S., Kaštovská, E., Körner, C., Lambers, H., et al. (2020). Surplus Carbon Drives Allocation and PlantSoil Interactions. Trends in Ecology & Evolution, 35, 1110–1118.
Price, D., Zimmermann, N. & Meer, P.V.D. (2001). Regeneration in gap models: Priority issues for studying forest responses to climate change. Climatic Change, 51, 475–508.
Prichard, S.J., Sandberg, D.V., Ottmar, R.D., Eberhardt, E., Andreu, A., Eagle, P., et al. (2013). Classification System Version 3.0: Technical Documentation.
Rahimi, A.A., Sepaskhah, A.R. & Ahmadi, S.H. (2011). Evaluation of different methods for the prediction of saturated hydraulic conductivity in tilled and untilled soils. Archives of Agronomy and Soil Science, 57, 899–914.
Rasche, L., Fahse, L., Zingg, A. & Bugmann, H. (2012). Enhancing gap model accuracy by modeling dynamic height growth and dynamic maximum tree height. Ecological Modelling, 232, 133–143.
Reich, P.B., Tjoelker, M.G., Pregitzer, K.S., Wright, I.J., Oleksyn, J. & Machado, J.L. (2008). Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 11, 793–801.
Reinhardt, E., Lutes, D. & Scott, J. (2006). FuelCalc: A method for estimating fuel characteristics.
Retana, J., Riba, M., Castell, C. & Espelta, J.M. (1992). Regeneration by sprouting of holm-oak (Quercus ilex) stands exploited by selection thinning. Vegetatio, 99, 355–364.
Richardson, A.D., Carbone, M.S., Keenan, T.F., Czimczik, C.I., Hollinger, D.Y., Murakami, P., et al. (2013). Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytologist, 197, 850–861.
Ritchie, J. (1972). Model for predicting evaporation from a row crop with incomplete cover. Water resources research, 8, 1204–1213.
Rolo, V. & Moreno, G. (2019). Shrub encroachment and climate change increase the exposure to drought of Mediterranean wood-pastures. Science of The Total Environment, 660, 550–558.
Rothermel, R.C. (1972). A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service Research Paper INT USA.
Rötzer, T., Häberle, K.H., Kallenbach, C., Matyssek, R., Schütze, G. & Pretzsch, H. (2017). Tree species and size drive water consumption of beech/spruce forests - a simulation study highlighting growth under water limitation. Plant and Soil, 418, 337–356.
Ruffault, J., Martin-StPaul, N.K., Duffet, C., Goge, F. & Mouillot, F. (2014). Projecting future drought in Mediterranean forests: Bias correction of climate models matters! Theoretical and Applied Climatology, 117, 113–122.
Ruffault, J., Martin-StPaul, N.K., Rambal, S. & Mouillot, F. (2013). Differential regional responses in drought length, intensity and timing to recent climate changes in a Mediterranean forested ecosystem. Climatic Change, 117, 103–117.
Ruffault, J., Pimont, F., Cochard, H., Dupuy, J.-L. & Martin-StPaul, N. (2022). SurEau-Ecos v2.0: A trait-based plant hydraulics model for simulations of plant water status and drought-induced mortality at the ecosystem level. Geoscientific Model Development, 15, 5593–5626.
Sandberg, D.V., Riccardi, C.L. & Schaaf, M.D. (2007). Reformulation of Rothermel’s wildland fire behaviour model for heterogeneous fuelbeds. Canadian Journal of Forest Research, 37, 2438–2455.
Sando, R.W. & Wick, C.H. (1972). A method of evaluating crown fuels in forest stands. Research Paper NC-84. USDA Forest Service Research Paper NC-84, 10 pp.
Savage, V.M., Bentley, L.P., Enquist, B.J., Sperry, J.S., Smith, D.D., Reich, P.B., et al. (2010). Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proceedings of the National Academy of Sciences of the United States of America, 107, 22722–7.
Saxton, K.E. & Rawls, W.J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70, 1569.
Saxton, K.E., Rawls, W.J., Romberger, J.S. & Papendick, R.I. (1986). Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal, 50, 1031–1036.
Schaaf, M.D., Sandberg, D.V., Schreuder, M.D. & Riccardi, C.L. (2007). A conceptual framework for ranking crown fire potential in wildland fuelbeds. Canadian Journal of Forest Research, 37, 2464–2478.
Schenk, H.J. & Jackson, R.B. (2002). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90, 480–494.
Schume, H., Jost, G. & Hager, H. (2004). Soil water depletion and recharge patterns in mixed and pure forest stands of European beech and Norway spruce. Journal of Hydrology, 289, 258–274.
Scott, J.H. & Reinhardt, E.D. (2002). Estimating canopy fuels in conifer forests. Fire Management Today, 62, 45–50.
Sellers, P.J. (1985). Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing, 6, 1335–1372.
Shinozaki, K., Yoda, K., Hozumi, K. & Kira, T. (1964). A quantitative analysis of plant form - the pipe model theory. I. Basic analysis. Japanese Journal of Ecology, 14, 97–105.
Sitch, S., Smith, B., Prentice, I.C., Arneth, a., Bondeau, a., Cramer, W., et al. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161–185.
Snell, R.S. (2014). Simulating long-distance seed dispersal in a dynamic vegetation model. Global Ecology and Biogeography, 23, 89–98.
Sperry, J.S., Adler, F.R., Campbell, G.S. & Comstock, J.P. (1998). Limitation of plant water use by rhizosphere and xylem conductance: Results from a model. Plant, Cell & Environment, 21, 347–359.
Sperry, J.S. & Love, D.M. (2015). What plant hydraulics can tell us about responses to climate-change droughts. New Phytologist, 207, 14–27.
Sperry, J.S., Venturas, M.D., Anderegg, W.R.L., Mencuccini, M., Mackay, D.S., Wang, Y., et al. (2017). Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant, Cell & Environment, 40, 816–830.
Sperry, J.S., Wang, Y., Wolfe, B.T., Mackay, D.S., Anderegg, W.R.L., Mcdowell, N.G., et al. (2016). Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytologist, 212, 577–589.
Spicer, R. (2005). Senescence in Secondary Xylem: Heartwood Formation as an Active Developmental Program. Vascular Transport in Plants, 457–475.
Spitters, C.J.T., Toussaint, H.A.J.M. & Goudriaan, J. (1986). Separating the diffuse and direct components of global radiation and its implications for modeling canopy photosynthesis. I. Components of incoming radiation. Agricultural and Forest Meteorology, 38, 231–242.
Stephan, K., Miller, M. & Dickinson, M.B. (2010). First-Order Fire Effects on Herbs and Shrubs: Present Knowledge and Process Modeling Needs. Fire Ecology, 6, 95–114.
Stolf, R., Thurler, Á., Oliveira, O., Bacchi, S. & Reichardt, K. (2011). Method to estimate soil macroporosity and microporosity based on sand content and bulk density. Revista Brasileira de Ciencias do Solo, 35, 447–459.
Tjoelker, M.G., Oleksyn, J. & Reich, P.B. (2001). Modelling respiration of vegetation: Evidence for a general temperature-dependent Q10. Global Change Biology, 7, 223–230.
Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G. & Tóth, G. (2015). New generation of hydraulic pedotransfer functions for Europe. European Journal of Soil Science, 66, 226–238.
Tyree, M.T. & Yang, S. (1990). Water-storage capacity of Thuja, Tsuga and Acer stems measured by dehydration isotherms - The contribution of capillary water and cavitation. Planta, 182, 420–426.
Urli, M., Porte, A.J., Cochard, H., Guengant, Y., Burlett, R. & Delzon, S. (2013). Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiology, 33, 672–683.
Van Lier, Q.D.J., Neto, D.D. & Metselaar, K. (2009). Modeling of transpiration reduction in van genuchten-mualem type soils. Water Resources Research, 45, 1–9.
Walker, A.P., Beckerman, A.P., Gu, L., Kattge, J., Cernusak, L.A., Domingues, T.F., et al. (2014). The relationship of leaf photosynthetic traits - Vcmax and Jmax - to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study. Ecology and Evolution, 4, 3218–3235.
Watanabe, T. & Mizutani, K. (1996). Model study on micrometeorological aspects of rainfall interception over an evergreen broad-leaved. Agricultural and Forest Meteorology, 80, 195–214.
Wehrli, A., Weisberg, P.J., Schönenberger, W., Brang, P. & Bugmann, H. (2007). Improving the establishment submodel of a forest patch model to assess the long-term protective effect of mountain forests. European Journal of Forest Research, 126, 131–145.
Wigmosta, M.S. & Lettenmaier, D.P. (1999). A comparison of simplified methods for routing topographically driven subsurface flow. Water Resources Research, 35, 255–264.
Wigmosta, M., Vail, L. & Lettenmaier, D. (1994). A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 30, 1665–1679.
Wolf, A., Anderegg, W.R.L. & Pacala, S.W. (2016). Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proceedings of the National Academy of Sciences, 113, E7222–E7230.